A process-based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices (e. g., forest harvest, chopping, burning, water management, fertilization, and tree planting), inclusion of detailed anaerobic biogeochemical processes for wetland soils, and utilization of hydrological models for quantifying water table variations. A 150-year management scenario consisting of three stages of wetland forest, deforestation/drainage, and wetland restoration was simulated with the Wetland-DNDC for two wetlands in Minnesota and Florida, USA. The impacts of the management scenario on carbon ecosystem exchange, methane emission, and nitrous oxide emission were quantified and assessed. The results suggested that: (1) the same management scenario produced very different consequences on global warming due to the contrast climate conditions; and (2) methane and nitrous oxide fluxes played nonnegligible roles in mitigation in comparison with carbon sequestration.