Spectral Methods Application in Problems of the Thin-walled Structures Deformation

被引:8
|
作者
Tkachenko, Denys [1 ]
Tsegelnyk, Yevgen [2 ]
Myntiuk, Sofia [3 ]
Myntiuk, Vitalii [1 ]
机构
[1] Natl Aerosp Univ, Dept Aircraft Strength, Kharkiv Aviat Inst, 17 Chkalova St, UA-61070 Kharkiv, Ukraine
[2] OM Beketov Natl Univ Urban Econ Kharkiv, Dept Automat & Comp Integrated Technol, 17 Marshala Bazhanova St, UA-61002 Kharkiv, Ukraine
[3] Ukrainian Catholic Univ, Fac Appl Sci, 17 Svientsitskoho St, UA-79011 Lvov, Ukraine
来源
关键词
The spectral solution; Legendre polynomials; beam; plate; structure; FREE-VIBRATION ANALYSIS; FINITE-ELEMENT-METHOD; H-P-VERSION; GALERKIN METHOD; PLATES; IMPLEMENTATION; POLYNOMIALS; EQUATIONS;
D O I
10.22055/JACM.2021.38346.3207
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The spectral method (p-FEM) is used to solve the problem of a thin-walled structure deformation, such as a stiffened panel. The problem of the continuous conjugation of the membrane function from H-1 and the deflection function from H-2 was solved by modifying the "boundary" functions. Basis systems were constructed that satisfy not only the essential but also the natural boundary conditions, which made it possible to increase the rate of convergence of the approximate solution. The veracity of the results is confirmed by comparing the obtained spectral solution with the solution obtained by the h-FEM. It has been shown that the exponential rate of convergence characteristic of spectral methods is preserved if the Gibbs phenomenon is avoided. The constructed basis systems can be effectively used for solving various problems of mechanics.
引用
收藏
页码:641 / 654
页数:14
相关论文
共 50 条