Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland

被引:43
|
作者
McHugh, Theresa A. [1 ]
Schwartz, Egbert [1 ]
机构
[1] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
基金
美国国家科学基金会;
关键词
Rain exclusion; Plant removal; Grassland; Illumina; MICROBIAL COMMUNITIES; RIBOSOMAL-RNA; NITROGEN; RESPONSES; RAINFALL; CLIMATE; DECOMPOSITION; AVAILABILITY; RHIZOSPHERE; RESISTANCE;
D O I
10.1007/s11104-014-2269-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
To assess the impacts of precipitation and plants on soil bacterial and fungal communities, precipitation was reduced and plants were removed from experimental plots in a semiarid grassland. For plots with reduced precipitation, rainout shelters were constructed using clear, corrugated polycarbonate panels. Plant removal plots had plants extracted manually to remove both above- and belowground portions, and these plots were kept free of vegetation for the duration of the experiment. High-throughput sequencing of the 16S rRNA gene and fungal ITS region was used to assess the response of soil microbial communities to experimental manipulations. Soil moisture content, inorganic nitrogen concentrations, and aboveground plant biomass were also examined in these experimental plots. Soil moisture in plots with reduced precipitation was on average 40 % lower than that in control plots, while soil moisture in plant removal plots resembled that of control plots. No significant differences in available nitrogen were observed among treatments. Plots with reduced precipitation contained significantly less aboveground biomass than control plots, and also displayed a significantly higher occurrence of Russian thistle, an annual exotic. Soil bacterial and fungal communities were impacted by reduced precipitation, plant removal, and time, though these differences were subtle. Climate-change associated reductions in precipitation and vegetation will not cause large shifts in soil microbial communities on short time scales.
引用
收藏
页码:175 / 186
页数:12
相关论文
共 50 条
  • [1] Changes in plant community composition and reduced precipitation have limited effects on the structure of soil bacterial and fungal communities present in a semiarid grassland
    Theresa A. McHugh
    Egbert Schwartz
    Plant and Soil, 2015, 388 : 175 - 186
  • [2] Minor Changes in Soil Bacterial and Fungal Community Composition Occur in Response to Monsoon Precipitation in a Semiarid Grassland
    Theresa A. McHugh
    George W. Koch
    Egbert Schwartz
    Microbial Ecology, 2014, 68 : 370 - 378
  • [3] Minor Changes in Soil Bacterial and Fungal Community Composition Occur in Response to Monsoon Precipitation in a Semiarid Grassland
    McHugh, Theresa A.
    Koch, George W.
    Schwartz, Egbert
    MICROBIAL ECOLOGY, 2014, 68 (02) : 370 - 378
  • [4] Changes in the composition of soil bacterial and fungal communities after revegetation with Caragana microphylla in a desertified semiarid grassland
    Yu, Jun
    Liu, Fang
    Tripathi, Binu M.
    Steinberger, Yosef
    JOURNAL OF ARID ENVIRONMENTS, 2020, 182
  • [5] A watering manipulation in a semiarid grassland induced changes in fungal but not bacterial community composition
    McHugh, Theresa A.
    Schwartz, Egbert
    PEDOBIOLOGIA, 2016, 59 (03) : 121 - 127
  • [6] Nitrogen deposition decouples grassland plant community from soil bacterial and fungal communities along a precipitation gradient
    Zhai, Changchun
    Yang, Yunfeng
    Kong, Lingjie
    Wang, Xueke
    Hou, Jiawei
    Zeng, Qing
    Ge, Anhui
    Yao, Baomin
    Zhou, Zhenxing
    Feng, Jiayin
    Ru, Jingyi
    Song, Jian
    Qiu, Xueli
    Zhang, Limei
    Wan, Shiqiang
    JOURNAL OF ECOLOGY, 2025,
  • [7] Effects of grassland afforestation on structure and function of soil bacterial and fungal communities
    Wang, Kaibo
    Zhang, Yongwang
    Tang, Zhuangsheng
    Shangguan, Zhouping
    Chang, Fan
    Jia, Feng'an
    Chen, Yiping
    He, Xinhua
    Shi, Weiyu
    Deng, Lei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 676 : 396 - 406
  • [8] Mowing mitigates the adverse effects of fertilization on plant diversity and changes soil bacterial and fungal community structure in the Inner Mongolia grassland
    Li, Fengshi
    Minggagud, Hugjiltu
    Jarvie, Scott
    Wang, Yonghui
    Yan, Yongzhi
    Gong, Xiaoqian
    Han, Peng
    Zhang, Qing
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 346
  • [9] Soil Fungal Communities Respond to Grassland Plant Community Richness and Soil Edaphics
    LeBlanc, Nicholas
    Kinkel, Linda L.
    Kistler, H. Corby
    MICROBIAL ECOLOGY, 2015, 70 (01) : 188 - 195
  • [10] Soil Fungal Communities Respond to Grassland Plant Community Richness and Soil Edaphics
    Nicholas LeBlanc
    Linda L. Kinkel
    H. Corby Kistler
    Microbial Ecology, 2015, 70 : 188 - 195