Restricted Lie algebras all whose elements are semisimple

被引:0
|
作者
Chen, Liangyun [2 ]
Xu, Xiaoning [1 ]
Zhang, Yongzheng [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110036, Peoples R China
[2] NE Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Restricted Lie algebra; ad-semisimple; simple-semiabelian; semisimple element; p-simple-semiabelian; TRIPLE-SYSTEMS; SUBALGEBRAS;
D O I
10.1007/s11464-010-0091-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
People studied the properties and structures of restricted Lie algebras all whose elements are semisimple. It is the main objective of this paper to continue the investigation in order to obtain deeper structure theorems. We obtain some sufficient conditions for the commutativity of restricted Lie algebras, generalize some results of R. Farnsteiner and characterize some properties of a finite-dimensional semisimple restricted Lie algebra all whose elements are semisimple. Moreover, we show that a centralsimple restricted Lie algebra all whose elements are semisimple over a field of characteristic p > 7 is a form of a classical Lie algebra.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [1] Restricted Lie algebras all whose elements are semisimple
    Liangyun Chen
    Xiaoning Xu
    Yongzheng Zhang
    Frontiers of Mathematics in China, 2011, 6 : 61 - 70
  • [3] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    Elashvili, A. G.
    Jibladze, M.
    Kac, V. G.
    TRANSFORMATION GROUPS, 2022, 27 (02) : 429 - 470
  • [4] SEMISIMPLE CYCLIC ELEMENTS IN SEMISIMPLE LIE ALGEBRAS
    A. G. ELASHVILI
    M. JIBLADZE
    V. G. KAC
    Transformation Groups, 2022, 27 : 429 - 470
  • [5] On Restricted Lie Superalgebras with Semisimple Elements
    陈良云
    孟道骥
    Northeastern Mathematical Journal, 2005, (03) : 35 - 45
  • [6] Cyclic elements in semisimple lie algebras
    A. G. Elashvili
    V. G. Kac
    E. B. Vinberg
    Transformation Groups, 2013, 18 : 97 - 130
  • [7] Cyclic elements in semisimple lie algebras
    Elashvili, A. G.
    Kac, V. G.
    Vinberg, E. B.
    TRANSFORMATION GROUPS, 2013, 18 (01) : 97 - 130
  • [8] Restricted enveloping algebras whose skew and symmetric elements are Lie metabelian
    Siciliano, Salvatore
    Usefi, Hamid
    FORUM MATHEMATICUM, 2016, 28 (04) : 807 - 812
  • [9] Normal forms of nilpotent elements in semisimple Lie algebras
    Jibladze, Mamuka
    Kac, Victor G.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1311 - 1331
  • [10] SEMISIMPLE RESOLUTION OF SEMISIMPLE LIE ALGEBRAS
    ONISHCHIK, AL
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (05): : 1033 - &