Spiked gold nanotriangles: formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis

被引:22
|
作者
Liebig, Ferenc [1 ]
Sarhan, Radwan M. [2 ,3 ,4 ]
Bargheer, Matias [3 ]
Schmitt, Clemens N. Z. [5 ]
Poghosyan, Armen H. [6 ]
Shahinyan, Aram A. [6 ]
Koetz, Joachim [1 ]
机构
[1] Univ Potsdam, Inst Chem, Karl Liebknecht Str 24-25,Haus 25, D-14476 Potsdam, Germany
[2] Cairo Univ, Chem Dept, Fac Sci, Cairo 12613, Egypt
[3] Univ Potsdam, Inst Phys, Karl Liebknecht Str 24-25,Haus 27, D-14476 Potsdam, Germany
[4] Humboldt Univ, Sch Analyt Sci Adlershof SALSA, Albert Einstein Str 5-9, D-10099 Berlin, Germany
[5] Max Planck Inst Colloids & Interfaces, Dept Biomat, Muhlenberg 1, D-14476 Potsdam, Germany
[6] Natl Acad Sci, Int Sci Educ Ctr, M Baghramyan Ave 24d, Yerevan 0019, Armenia
关键词
OPTICAL-PROPERTIES; GROWTH; NANOPARTICLES; RESONANCE; TEMPERATURE; NANOSTARS; SIZE; PERFORMANCE; OVERGROWTH; MICELLES;
D O I
10.1039/d0ra00729c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We show the formation of metallic spikes on the surface of gold nanotriangles (AuNTs) by using the same reduction process which has been used for the synthesis of gold nanostars. We confirm that silver nitrate operates as a shape-directing agent in combination with ascorbic acid as the reducing agent and investigate the mechanism by dissecting the contribution of each component, i.e., anionic surfactant dioctyl sodium sulfosuccinate (AOT), ascorbic acid (AA), and AgNO3. Molecular dynamics (MD) simulations show that AA attaches to the AOT bilayer of nanotriangles, and covers the surface of gold clusters, which is of special relevance for the spike formation process at the AuNT surface. The surface modification goes hand in hand with a change of the optical properties. The increased thickness of the triangles and a sizeable fraction of silver atoms covering the spikes lead to a blue-shift of the intense near infrared absorption of the AuNTs. The sponge-like spiky surface increases both the surface enhanced Raman scattering (SERS) cross section of the particles and the photo-catalytic activity in comparison with the unmodified triangles, which is exemplified by the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4 '-dimercaptoazobenzene (DMAB).
引用
收藏
页码:8152 / 8160
页数:9
相关论文
共 50 条
  • [1] Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface-Enhanced Raman Spectroscopy
    Liebig, Ferenc
    Sarhan, Radwan M.
    Schmitt, Clemens N. Z.
    Thuenemann, Andreas F.
    Prietzel, Claudia
    Bargheer, Matias
    Koetz, Joachim
    CHEMPLUSCHEM, 2020, 85 (03): : 519 - 526
  • [2] In Vitro biosynthesis of gold nanotriangles for Surface-Enhanced Raman spectroscopy
    Iosin, M.
    Toderas, F.
    Baldeck, P.
    Astilean, S.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (09): : 2285 - 2288
  • [3] Plasmon-enhanced polarized Raman spectroscopy for sensitive surface characterization
    Kasim, J.
    Tee, X. Y.
    You, Y. M.
    Ni, Z. H.
    Setiawan, Y.
    Lee, P. S.
    Chan, L.
    Shen, Z. X.
    JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) : 1338 - 1342
  • [4] Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
    Wang, Xiang
    Huang, Sheng-Chao
    Hu, Shu
    Yan, Sen
    Ren, Bin
    NATURE REVIEWS PHYSICS, 2020, 2 (05) : 253 - 271
  • [5] Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
    Xiang Wang
    Sheng-Chao Huang
    Shu Hu
    Sen Yan
    Bin Ren
    Nature Reviews Physics, 2020, 2 : 253 - 271
  • [6] Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy
    Jiao, Sulin
    Dai, Kun
    Besteiro, Lucas V.
    Gao, Hongen
    Chen, Xuan
    Wang, Weichao
    Zhang, Yuan
    Liu, Chuntai
    Perez-Juste, Ignacio
    Perez-Juste, Jorge
    Pastoriza-Santos, Isabel
    Zheng, Guangchao
    ACS CATALYSIS, 2024, 14 (09) : 6799 - 6806
  • [7] Fabrication of raspberry-like gold nanoparticles and their applications in surface-enhanced Raman spectroscopy and catalysis
    Wang, Chunrong
    Yan, Xianzai
    Yu, Lili
    Li, Jiandan
    CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING III, PTS 1-3, 2014, 881-883 : 952 - 955
  • [9] Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy
    Matsukovich, A. S.
    Shabunya-Klyachkovskaya, E., V
    Sawczak, M.
    Grochowska, K.
    Maskowicz, D.
    Sliwinski, G.
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2019, 18 (3-4)
  • [10] Bioanalytical applications of surface-enhanced Raman spectroscopy
    Sharma, Bhavya
    Van Duyne, Richard P.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248