ESTIMATION OF NON-CROSSING QUANTILE REGRESSION CURVES

被引:6
|
作者
Cai, Yuzhi [1 ]
Jiang, Tao [2 ]
机构
[1] Swansea Univ, Sch Management, Swansea SA2 8PP, W Glam, Wales
[2] Univ Cambridge, Dept Publ Hlth & Primary Care, Cambridge CB1 8RN, England
关键词
asymmetric Laplace distribution; comonotonicity; quasi-Bayesian method; NONPARAMETRIC-ESTIMATION;
D O I
10.1111/anzs.12106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression methods have been widely used in many research areas in recent years. However conventional estimation methods for quantile regression models do not guarantee that the estimated quantile curves will be non-crossing. While there are various methods in the literature to deal with this problem, many of these methods force the model parameters to lie within a subset of the parameter space in order for the required monotonicity to be satisfied. Note that different methods may use different subspaces of the space of model parameters. This paper establishes a relationship between the monotonicity of the estimated conditional quantiles and the comonotonicity of the model parameters. We develope a novel quasi-Bayesian method for parameter estimation which can be used to deal with both time series and independent statistical data. Simulation studies and an application to real financial returns show that the proposed method has the potential to be very useful in practice.
引用
收藏
页码:139 / 162
页数:24
相关论文
共 50 条
  • [1] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    STATISTICAL PAPERS, 2018, 59 (04) : 1589 - 1621
  • [2] Non-crossing convex quantile regression
    Dai, Sheng
    Kuosmanen, Timo
    Zhou, Xun
    ECONOMICS LETTERS, 2023, 233
  • [3] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    Statistical Papers, 2018, 59 : 1589 - 1621
  • [4] Stepwise multiple quantile regression estimation using non-crossing constraints
    Wu, Yichao
    Liu, Yufeng
    STATISTICS AND ITS INTERFACE, 2009, 2 (03) : 299 - 310
  • [5] Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
    Liu, Yufeng
    Wu, Yichao
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (02) : 415 - 437
  • [6] Parametric estimation of non-crossing quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    STATISTICAL MODELLING, 2023, 23 (02) : 173 - 195
  • [7] Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints
    Bang, Sungwan
    Jhun, Myoungshic
    Cho, HyungJun
    KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (06) : 915 - 922
  • [8] Simultaneous estimation for non-crossing multiple quantile regression with right censored data
    Bang, Sungwan
    Cho, HyungJun
    Jhun, Myoungshic
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 131 - 147
  • [9] Non-crossing non-parametric estimates of quantile curves
    Dette, Holger
    Volgushev, Stanislav
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 : 609 - 627
  • [10] Simultaneous estimation for non-crossing multiple quantile regression with right censored data
    Sungwan Bang
    HyungJun Cho
    Myoungshic Jhun
    Statistics and Computing, 2016, 26 : 131 - 147