Gauge symmetry in Fokker-Planck dynamics

被引:4
|
作者
de Montigny, M
Khanna, FC
Santana, AE
机构
[1] Univ Alberta, Fac St Jean, Edmonton, AB T6C 4G9, Canada
[2] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
[3] TRIUMF, Vancouver, BC V6T 2A3, Canada
[4] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
关键词
Fokker-Planck equation; symmetry in field theory; Riemannian geometry;
D O I
10.1016/S0378-4371(03)00041-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a Galilean metric approach, based on an embedding of the Euclidean space into a (4 + 1)-Minkowski space, we analyze a gauge invariant Lagrangian associated with a Riemannian manifold R, with metric g. With a specific choice of the gauge condition, the Euler-Lagrange equations are written covariantly in R, and then the Fokker-Planck equation is derived, such that the drift and the diffusion terms are obtained from g. The analysis is carried out for both, Abelian and non-Abelian symmetries, and an example with the su(2) symmetry is presented. (C)) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 50 条
  • [1] SEARCH FOR THE SYMMETRY OF THE FOKKER-PLANCK EQUATION
    AN, I
    CHEN, S
    GUO, H
    PHYSICA A, 1984, 128 (03): : 520 - 528
  • [2] Quantum Fokker-Planck Dynamics
    Labuschagne, Louis
    Majewski, W. Adam
    ANNALES HENRI POINCARE, 2022, 23 (05): : 1659 - 1691
  • [3] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [4] WICKS THEOREM AND FOKKER-PLANCK DYNAMICS
    GARRIDO, L
    MIGUEL, MS
    PHYSICS LETTERS A, 1977, 62 (07) : 467 - 468
  • [5] FOKKER-PLANCK DYNAMICS AT PREMELTING SURFACES
    FERRANDO, R
    SPADACINI, R
    TOMMEI, GE
    PHYSICAL REVIEW B, 1992, 45 (01): : 444 - 447
  • [6] Neuronal Asymmetries and Fokker-Planck Dynamics
    de Luca, Vitor Tocci F.
    Wedemann, Roseli S.
    Plastino, Angel R.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT III, 2018, 11141 : 703 - 713
  • [7] PERTURBATION EXPANSION FOR THE FOKKER-PLANCK DYNAMICS
    LANGOUCHE, F
    ROEKAERTS, D
    TIRAPEGUI, E
    PROGRESS OF THEORETICAL PHYSICS, 1979, 61 (06): : 1617 - 1628
  • [8] THE FOKKER-PLANCK EQUATIONS IN LATTICE GAUGE-THEORIES
    XUE, SS
    PHYSICS LETTERS B, 1986, 180 (03) : 275 - 280
  • [9] Extended symmetry analysis of a "nonconservative Fokker-Planck equation"
    Boyko, Vyacheslav M.
    Shapoval, Nataliya M.
    GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS AND INTEGRABLE SYSTEM, 5TH INTERNATIONAL WORKSHOP, 2011, : 40 - 46
  • [10] Dilatation symmetry of the Fokker-Planck equation and anomalous diffusion
    Abe, S
    PHYSICAL REVIEW E, 2004, 69 (01): : 4