Improving protein-protein interaction prediction based on phylogenetic information using a least-squares support vector machine

被引:9
|
作者
Craig, Roger A. [1 ]
Liao, Li [1 ]
机构
[1] Univ Delaware, Dept Comp & Informat Sci, Newark, DE 19716 USA
关键词
protein-protein interaction; phylogenetic vectors; least-squares support vector machines;
D O I
10.1196/annals.1407.005
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting protein-protein interactions has become a key step of reverse-engineering biological networks to better understand cellular functions. The experimental methods in determining protein-protein interactions are time-consuming and costly, which has motivated vigorous development of computational approaches for predicting protein-protein interactions. A set of recently developed bioinformatics methods utilizes coevolutionary information of the interacting partners (e.g., as exhibited in the form of correlations between distance matrices, where, for each protein, a matrix stores the pair-wise distances between the protein and its orthologs in a group of reference genomes). We proposed a novel method to account for the intra-matrix correlations in improving predictive accuracy. The distance matrices for a pair of proteins are transformed and concatenated into a phylogenetic vector. A least-squares support vector machine is trained and tested on pairs of proteins, represented as phylogenetic vectors, whose interactions are known. The intra-matrix correlations are accounted for by introducing a weighted linear kernel, which determines the dot product of two phylogenetic vectors. The performance, measured as receiver operator characteristic (ROC) score in cross-validation experiments, shows significant improvement of our method (ROC score 0.928) over that obtained by Pearson correlations (0.659).
引用
收藏
页码:154 / 167
页数:14
相关论文
共 50 条
  • [1] Prediction of Protein-Protein Interaction with Pairwise Kernel Support Vector Machine
    Zhang, Shao-Wu
    Hao, Li-Yang
    Zhang, Ting-He
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (02): : 3220 - 3233
  • [2] Prediction of Protein-Protein Interaction Sites by Using Autocorrelation Descriptor and Support Vector Machine
    Ren, Xiao-Ming
    Xia, Jun-Feng
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2010, 6216 : 76 - 82
  • [3] Sequence-based protein-protein interaction prediction via support vector machine
    Yongcui Wang
    Jiguang Wang
    Zhixia Yang
    Naiyang Deng
    Journal of Systems Science and Complexity, 2010, 23 : 1012 - 1023
  • [4] Sequence-based protein-protein interaction prediction via support vector machine
    Wang, Yongcui
    Wang, Jiguang
    Yang, Zhixia
    Deng, Naiyang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2010, 23 (05) : 1012 - 1023
  • [5] Prediction of Protein-Protein Interactions Based on Protein-Protein Correlation Using Least Squares Regression
    Huang, De-Shuang
    Zhang, Lei
    Han, Kyungsook
    Deng, Suping
    Yang, Kai
    Zhang, Hongbo
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2014, 15 (06) : 553 - 560
  • [6] Protein-protein interaction prediction based on sequence data by support vector machine with probability assignment
    Ye, JK
    Kulikowski, C
    Muchnik, I
    PROCEEDINGS OF THE 2005 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2005, : 318 - 324
  • [7] Protein-Protein Recognition Prediction Using Support Vector Machine Based on Feature Vectors
    Kuo, Huang-Cheng
    Ong, Ping-Lin
    Lin, Jung-Chang
    Huang, Jen-Peng
    2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, PROCEEDINGS, 2008, : 200 - +
  • [8] Determining Protein-Protein Interaction Using Support Vector Machine: A Review
    Chakraborty, Arijit
    Mitra, Sajal
    De, Debashis
    Pal, Anindya Jyoti
    Ghaemi, Ferial
    Ahmadian, Ali
    Ferrara, Massimiliano
    IEEE ACCESS, 2021, 9 : 12473 - 12490
  • [9] Prediction of protein-protein interaction sites using support vector machines
    Minakuchi, Y
    Satou, K
    Konagaya, A
    METMBS'03: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, 2003, : 22 - 28
  • [10] Prediction of protein-protein interaction sites using support vector machines
    Koike, A
    Takagi, T
    PROTEIN ENGINEERING DESIGN & SELECTION, 2004, 17 (02): : 165 - 173