Randomized benchmarking of quantum gates

被引:662
|
作者
Knill, E. [1 ]
Leibfried, D. [1 ]
Reichle, R. [1 ]
Britton, J. [1 ]
Blakestad, R. B. [1 ]
Jost, J. D. [1 ]
Langer, C. [1 ]
Ozeri, R. [1 ]
Seidelin, S. [1 ]
Wineland, D. J. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
关键词
D O I
10.1103/PhysRevA.77.012307
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A key requirement for scalable quantum computing is that elementary quantum gates can be implemented with sufficiently low error. One method for determining the error behavior of a gate implementation is to perform process tomography. However, standard process tomography is limited by errors in state preparation, measurement and one-qubit gates. It suffers from inefficient scaling with number of qubits and does not detect adverse error-compounding when gates are composed in long sequences. An additional problem is due to the fact that desirable error probabilities for scalable quantum computing are of the order of 0.0001 or lower. Experimentally proving such low errors is challenging. We describe a randomized benchmarking method that yields estimates of the computationally relevant errors without relying on accurate state preparation and measurement. Since it involves long sequences of randomly chosen gates, it also verifies that error behavior is stable when used in long computations. We implemented randomized benchmarking on trapped atomic ion qubits, establishing a one-qubit error probability per randomized pi/2 pulse of 0.00482(17) in a particular experiment. We expect this error probability to be readily improved with straightforward technical modifications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Randomized Benchmarking of Quantum Gates on a GPU
    Zawad, Syed
    Yan, Feng
    Wu, Rui
    Barford, Lee
    Harris, Frederick C., Jr.
    16TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY-NEW GENERATIONS (ITNG 2019), 2019, 800 : 307 - 315
  • [2] Randomized Benchmarking for Individual Quantum Gates
    Onorati, E.
    Werner, A. H.
    Eisert, J.
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [3] Characterizing quantum gates via randomized benchmarking
    Magesan, Easwar
    Gambetta, Jay M.
    Emerson, Joseph
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [4] Randomized benchmarking of quantum gates implemented by electron spin resonance
    Park, Daniel K.
    Feng, Guanru
    Rahimi, Robabeh
    Baugh, Jonathan
    Laflamme, Raymond
    JOURNAL OF MAGNETIC RESONANCE, 2016, 267 : 68 - 78
  • [5] Randomized Benchmarking of Multiqubit Gates
    Gaebler, J. P.
    Meier, A. M.
    Tan, T. R.
    Bowler, R.
    Lin, Y.
    Hanneke, D.
    Jost, J. D.
    Home, J. P.
    Knill, E.
    Leibfried, D.
    Wineland, D. J.
    PHYSICAL REVIEW LETTERS, 2012, 108 (26)
  • [6] Process verification of two-qubit quantum gates by randomized benchmarking
    Corcoles, A. D.
    Gambetta, Jay M.
    Chow, Jerry M.
    Smolin, John A.
    Ware, Matthew
    Strand, Joel
    Plourde, B. L. T.
    Steffen, M.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [7] Randomized benchmarking for qudit Clifford gates
    Jafarzadeh, Mahnaz
    Wu, Ya-Dong
    Sanders, Yuval R.
    Sanders, Barry C.
    NEW JOURNAL OF PHYSICS, 2020, 22 (06)
  • [8] Hybrid benchmarking of arbitrary quantum gates
    Chasseur, Tobias
    Reich, Daniel M.
    Koch, Christiane P.
    Wilhelm, Frank K.
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [9] Benchmarking universal quantum gates via channel spectrum
    Gu, Yanwu
    Zhuang, Wei-Feng
    Chai, Xudan
    Liu, Dong E.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Benchmarking universal quantum gates via channel spectrum
    Yanwu Gu
    Wei-Feng Zhuang
    Xudan Chai
    Dong E. Liu
    Nature Communications, 14