Dynamical multi-objective optimization evolutionary algorithm

被引:0
|
作者
Xiong, SW [1 ]
Li, F [1 ]
Wang, W [1 ]
Feng, C [1 ]
机构
[1] Wuhan Univ Technol, Dept Comp Technol, Wuhan 430070, Peoples R China
关键词
dynamical evolutionary algorithm; multi-objective optimization; image manipulation;
D O I
10.1117/12.538976
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A dynamical multi-objective evolutionary algorithm (DMOEA) is proposed. It is the first study of the dynamical evolutionary algorithm (DEA) in multi-objective optimization problems. All individuals called as particles in a population evolve through a new selection mechanism. We combine the selection mechanism in DEA and the elitists strategy in existing evolutionary multi-objective optimization algorithms in DMOEA. The performance of DMOEA has been analyzed in comparison with SPEA2. The experimental results show that DMOEA clearly outperforms SPEA2 for the whole benchmark set. Moreover, a better convergence is sometimes observed in DMOEA for some functions of the benchmark set. The numerical experiment results demonstrate that the proposed method can rapidly converge to the Pareto optimal front and spread widely along the front.
引用
收藏
页码:418 / 421
页数:4
相关论文
共 50 条
  • [1] Dynamical Multi-objective Optimization Using Evolutionary Algorithm for Engineering
    Wang, Lingling
    Li, Yuanxiang
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 304 - 311
  • [2] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [3] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    Soft Computing, 2017, 21 : 5883 - 5891
  • [4] Multi-objective optimization by a new dynamical evolutionary algorithm based on the information entropy
    Ding, W
    Hu, T
    Zhang, HG
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 50 - 53
  • [5] An evolutionary algorithm for dynamic multi-objective optimization
    Wang, Yuping
    Dang, Chuangyin
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 6 - 18
  • [6] An evolutionary algorithm for constrained multi-objective optimization
    Jiménez, F
    Gómez-Skarmeta, AF
    Sánchez, G
    Deb, K
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1133 - 1138
  • [7] An new evolutionary multi-objective optimization algorithm
    Mu, SJ
    Su, HY
    Chu, J
    Wang, YX
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 914 - 920
  • [8] Dynamic multi-objective optimization evolutionary algorithm
    Liu, Chun-an
    Wang, Yuping
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 456 - +
  • [9] A Multi-objective Evolutionary Algorithm based on Decomposition for Constrained Multi-objective Optimization
    Martinez, Saul Zapotecas
    Coello, Carlos A. Coello
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 429 - 436
  • [10] An orthogonal multi-objective evolutionary algorithm for multi-objective optimization problems with constraints
    Zeng, SY
    Kang, LSS
    Ding, LXX
    EVOLUTIONARY COMPUTATION, 2004, 12 (01) : 77 - 98