Detection of PCB Surface Defects With Improved Faster-RCNN and Feature Pyramid Network

被引:145
|
作者
Hu, Bing [1 ]
Wang, Jianhui [1 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Liaoning, Peoples R China
关键词
Convolution; Feature extraction; Production; Inspection; Object detection; Kernel; Databases; Defect detection; deep learning; residual network; feature pyramid; ShuffleNetV2; CIRCUIT; INSPECTION;
D O I
10.1109/ACCESS.2020.3001349
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Defect detection is an essential requirement for quality control in the production of printed circuit boards (PCBs) manufacturing. The traditional defect detection methods have various drawbacks, such as strongly depending on a carefully designed template, highly computational cost, and noise-susceptibility, which pose a significant challenge in a production environment. In this paper, a deep learning-based image detection method for PCB defect detection is proposed. This method builds a new network based on Faster RCNN. We use a ResNet50 with Feature Pyramid Networks as the backbone for feature extraction, to better detect small defects on the PCB. Secondly, we use GARPN to predict more accurate anchors and merge the residual units of ShuffleNetV2. The experimental results show that this method is more suitable for use in production than other PCB defect detection methods. We have also tested in other PCB defects dataset, and experiments have shown that this method is equally valid.
引用
收藏
页码:108335 / 108345
页数:11
相关论文
共 50 条
  • [1] Spark plug defects detection based on improved Faster-RCNN algorithm
    Liu, Yuhang
    Liu, Yi
    Zhang, Pengcheng
    Zhang, Quan
    Wang, Lei
    Yan, Rongbiao
    Li, Wenqiang
    Gui, Zhiguo
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2022, 30 (04) : 709 - 724
  • [2] Online detection algorithm of automobile wheel surface defects based on improved faster-rcnn model
    Zhu, Chao-Ping
    Yang, Yong-Bin
    Surface Technology, 2020, 49 (06): : 359 - 365
  • [3] Detection of Electric Component Based on Improved Faster-RCNN
    Xiao, Chengling
    Zhang, Dongdong
    Sun, Chengyu
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [4] Insulator Detection Study Based on Improved Faster-RCNN
    Jing, Zhuangzhuang
    3D IMAGING-MULTIDIMENSIONAL SIGNAL PROCESSING AND DEEP LEARNING, VOL 1, 2022, 297 : 141 - 152
  • [5] The improved faster-RCNN for spinal fracture lesions detection
    Sha, Gang
    Wu, Junsheng
    Yu, Bin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5823 - 5837
  • [6] Nighttime Vehicle Detection Algorithm Based on Improved Faster-RCNN
    Xu, Yaqing
    Chu, Kaibin
    Zhang, Ji
    IEEE ACCESS, 2024, 12 : 19299 - 19306
  • [7] Underwater Biological Detection Algorithm Based on Improved Faster-RCNN
    Shi, Pengfei
    Xu, Xiwang
    Ni, Jianjun
    Xin, Yuanxue
    Huang, Weisheng
    Han, Song
    WATER, 2021, 13 (17)
  • [8] A Lightweight Target Detection Algorithm Based on the Improved Faster-RCNN
    Ma Y.
    Kong M.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (12): : 2664 - 2674
  • [9] Detection of spinal fracture lesions based on Improved Faster-RCNN
    Sha, Gang
    Wu, Junsheng
    Yu, Bin
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 29 - 32
  • [10] Improved Faster-RCNN Based on Multi Feature Scale Fusion for Automatic Detection of Microaneurysms in Retina
    Gao Weiwei
    Yang Yile
    Fang Yu
    Fan Bo
    Song Nan
    ACTA PHOTONICA SINICA, 2023, 52 (04)