Video Frame Interpolation via Adaptive Convolution

被引:347
|
作者
Niklaus, Simon [1 ]
Mai, Long [1 ]
Liu, Feng [1 ]
机构
[1] Portland State Univ, Portland, OR 97207 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2017.244
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video frame interpolation typically involves two steps: motion estimation and pixel synthesis. Such a two-step approach heavily depends on the quality of motion estimation. This paper presents a robust video frame interpolation method that combines these two steps into a single process. Specifically, our method considers pixel synthesis for the interpolated frame as local convolution over two input frames. The convolution kernel captures both the local motion between the input frames and the coefficients for pixel synthesis. Our method employs a deep fully convolutional neural network to estimate a spatially-adaptive convolution kernel for each pixel. This deep neural network can be directly trained end to end using widely available video data without any difficult-to-obtain ground-truth data like optical flow. Our experiments show that the formulation of video interpolation as a single convolution process allows our method to gracefully handle challenges like occlusion, blur, and abrupt brightness change and enables high-quality video frame interpolation.
引用
收藏
页码:2270 / 2279
页数:10
相关论文
共 50 条
  • [1] Video Frame Interpolation via Adaptive Separable Convolution
    Niklaus, Simon
    Mai, Long
    Liu, Feng
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 261 - 270
  • [2] Video Frame Interpolation via Deformable Separable Convolution
    Cheng, Xianhang
    Chen, Zhenzhong
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10607 - 10614
  • [3] Video Frame Interpolation via Generalized Deformable Convolution
    Shi, Zhihao
    Liu, Xiaohong
    Shi, Kangdi
    Dai, Linhui
    Chen, Jun
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 426 - 439
  • [4] Multiple Video Frame Interpolation via Enhanced Deformable Separable Convolution
    Cheng, Xianhang
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (10) : 7029 - 7045
  • [5] Video Frame Interpolation via Multi-scale Expandable Deformable Convolution
    Zhang, Dengyong
    Huang, Pu
    Ding, Xiangling
    Li, Feng
    Yang, Gaobo
    PROCEEDINGS OF THE 2023 ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, IH&MMSEC 2023, 2023, : 19 - 28
  • [6] Multi-Level Adaptive Separable Convolution for Large-Motion Video Frame Interpolation
    Wijma, Ruth
    You, Shaodi
    Li, Yu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1127 - 1135
  • [7] Revisiting Adaptive Convolutions for Video Frame Interpolation
    Niklaus, Simon
    Mai, Long
    Wang, Oliver
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1098 - 1108
  • [8] Context-based video frame interpolation via depthwise over-parameterized convolution
    Zhang, Haoran
    Yang, Xiaohui
    Feng, Zhiquan
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [9] Scene-Adaptive Video Frame Interpolation via Meta-Learning
    Choi, Myungsub
    Choi, Janghoon
    Baik, Sungyong
    Kim, Tae Hyun
    Lee, Kyoung Mu
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 9441 - 9450
  • [10] Optimizing Video Prediction via Video Frame Interpolation
    Wu, Yue
    Wen, Qiang
    Chen, Qifeng
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17793 - 17802