Finite-dimensional vertex algebra modules over fixed point commutative subalgebras

被引:0
|
作者
Tanabe, Kenichiro [1 ]
机构
[1] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
关键词
Vertex algebra; Galois extension; Commutative algebra; OPERATOR ALGEBRA; IRREDUCIBLE MODULES; REPRESENTATIONS; CLASSIFICATION; AUTOMORPHISM; M(1)(+); V-L(+); RANK;
D O I
10.1016/j.jalgebra.2011.04.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a connected commutative C-algebra with derivation D. G a finite linear automorphism group of A which preserves D, and R = A(G) the fixed point subalgebra of A under the action of G. We show that if A is generated by a single element as an R-algebra and is a Galois extension over R in the sense of M. Auslander and O. Goldman, then every finite-dimensional indecomposable vertex algebra R-module has a structure of twisted vertex algebra A-module. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:323 / 334
页数:12
相关论文
共 50 条