SEPARATING INVARIANTS FOR THE BASIC Ga-ACTIONS

被引:0
|
作者
Elmer, Jonathan [1 ]
Kohls, Martin [2 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Tech Univ Munich, Zentrum Math M11, D-85748 Garching, Germany
关键词
Invariant theory; separating invariants; binary forms; locally nilpotent derivations; basic G(a)-actions; generalized hypergeometric series; ALGORITHM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explicitly construct a finite set of separating invariants for the basic G(a)-actions. These are the finite dimensional indecomposable rational linear representations of the additive group G(a) of a field of characteristic zero, and their invariants are the kernel of the Weitzenbock derivation D-n = x(0) partial derivative/partial derivative x1 + ... + x(n-1) partial derivative/partial derivative x(n).
引用
收藏
页码:135 / 146
页数:12
相关论文
共 50 条
  • [2] PROPER GA-ACTIONS
    FAUNTLEROY, A
    MAGID, AR
    DUKE MATHEMATICAL JOURNAL, 1976, 43 (04) : 723 - 729
  • [3] SEPARATED GA-ACTIONS
    MAGID, AR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 76 (01) : 35 - 38
  • [4] Ga-actions and completions
    Miyanishi, Masayoshi
    JOURNAL OF ALGEBRA, 2008, 319 (07) : 2845 - 2854
  • [5] On locally trivial Ga-actions
    J. K. Deveney
    D. R. Finston
    Transformation Groups, 1997, 2 (2) : 137 - 145
  • [6] Geometrically pure Ga-actions
    Miyanishi, Masayoshi
    JOURNAL OF ALGEBRA, 2024, 648 : 1 - 8
  • [7] Ga-ACTIONS ON AFFINE CONES
    Kishimoto, Takashi
    Prokhorov, Yuri
    Zaidenberg, Mikhail
    TRANSFORMATION GROUPS, 2013, 18 (04) : 1137 - 1153
  • [8] Ga-ACTIONS ON THE COMPLEMENTS OF HYPERSURFACES
    Park, Jihun
    TRANSFORMATION GROUPS, 2022, 27 (02) : 651 - 657
  • [9] Affine threefolds admitting Ga-actions
    Gurjar, R., V
    Koras, M.
    Masuda, K.
    Miyanishi, M.
    Russell, P.
    MATHEMATISCHE ANNALEN, 2019, 373 (3-4) : 1211 - 1236
  • [10] QUASI-AFFINE SURFACES WITH GA-ACTIONS
    FAUNTLEROY, A
    MAGID, AR
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 68 (03) : 265 - 270