Classification of divisible design graphs with at most 39 vertices

被引:4
|
作者
Panasenko, Dmitry [1 ,2 ]
Shalaginov, Leonid [1 ]
机构
[1] Chelyabinsk State Univ, Math Dept, Bratev Kashirinyh St 129, Chelyabinsk 454021, Russia
[2] Krasovskii Inst Math & Mech, Dept Algebra & Topol, Ekaterinburg, Russia
基金
俄罗斯基础研究基金会;
关键词
divisible design; divisible design graph; walk-regular graph;
D O I
10.1002/jcd.21818
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-regular graph is called a divisible design graph (DDG) if its vertex set can be partitioned into m classes of size n, such that two distinct vertices from the same class have exactly lambda 1 common neighbours, and two vertices from different classes have exactly lambda 2 common neighbours. A DDG with m = 1, n = 1, or lambda 1 = lambda 2 is called improper, otherwise it is called proper. We present new constructions of DDGs and, using a computer enumeration algorithm, we find all proper connected DDGs with at most 39 vertices, except for three tuples of parameters: ( 32 , 15 , 6 , 7 , 4 , 8 ), ( 32 , 17 , 8 , 9 , 4 , 8 ), and ( 36 , 24 , 15 , 16 , 4 , 9 ).
引用
收藏
页码:205 / 219
页数:15
相关论文
共 50 条
  • [1] Divisible design graphs
    Haemers, Willem H.
    Kharaghani, Hadi
    Meulenberg, Maaike A.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) : 978 - 992
  • [2] THE TRANSITIVE GRAPHS WITH A MOST 26 VERTICES
    MCKAY, BD
    ROYLE, GF
    ARS COMBINATORIA, 1990, 30 : 161 - 176
  • [3] All Graphs with at Most Seven Vertices are Pairwise Compatibility Graphs
    Calamoneri, Tiziana
    Frascaria, Dario
    Sinaimeri, Blerina
    COMPUTER JOURNAL, 2013, 56 (07): : 882 - 886
  • [4] A characterization of graphs with at most four boundary vertices
    Chiem, Nick
    Dudarov, William
    Lee, Chris
    Lee, Sean
    Liu, Kevin
    JOURNAL OF COMBINATORICS, 2024, 15 (03) : 361 - 382
  • [5] Generating All Rigidity Circuits on at Most 10 Vertices and All Assur Graphs on at Most 11 Vertices
    Mc Glue, Ciaran
    Stokes, Klara
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (01)
  • [6] ENUMERATION OF STRICTLY DEZA GRAPHS WITH AT MOST 21 VERTICES
    Goryainov, S., V
    Panasenko, D., I
    Shalaginov, L., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 (02): : 1423 - 1432
  • [8] CLASSIFICATION OF SYMMETRIC GRAPHS WITH A PRIME NUMBER OF VERTICES
    CHAO, CY
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (03): : 508 - &
  • [9] Three color Ramsey numbers for graphs with at most 4 vertices
    Boza, Luis
    Dybizbanski, Janusz
    Dzido, Tomasz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [10] Walk-regular divisible design graphs
    Crnkovic, Dean
    Haemers, Willem H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) : 165 - 175