Unsupervised color image segmentation using mean shift and deterministic annealing EM

被引:0
|
作者
Cho, WH [1 ]
Park, J
Lee, M
Park, S
机构
[1] Chonnam Natl Univ, Dept Stat, Chungnam, South Korea
[2] Univ So Calif, Inst Robot & Intelligent Syst, Los Angeles, CA 90089 USA
[3] Mokpo Natl Univ, Dept Elect Engn, Chungnam, South Korea
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an unsupervised segmentation algorithm combining the mean shift procedure and deterministic annealing expectation maximization (DAEM) called MS-DAEM algorithm. We use the mean shift procedure to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the Gaussian mixture model (GMM) to represent the probability distribution of color feature vectors. A DAEM formula is used to estimate the parameters of the GMM which represents the multi-colored objects statistically. The experimental results show that the mean shift part of the proposed MS-DAEM algorithm is efficient to determine the number of components and initial modes of each component in mixture models. And also it shows that the DAEM part provides a global optimal solution for the parameter estimation in a mixture model and the natural color images are segmented efficiently by using the GMM with components estimated by MS-DAEM algorithm.
引用
收藏
页码:867 / 876
页数:10
相关论文
共 50 条
  • [1] Segmentation of color image using deterministic annealing EM.
    Cho, WH
    Park, SY
    Park, JH
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 642 - 645
  • [2] Segmentation of medical image based on mean shift and deterministic annealing EM algorithm
    Lee, Myung-Eun
    Kim, Soo-Hyung
    Cho, Wan-Hyun
    Zhao, Xin
    2008 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1-3, 2008, : 937 - +
  • [3] A new unsupervised image segmentation algorithm based on deterministic annealing EM
    Zhong, JQ
    Wang, RS
    2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT SYSTEMS AND SIGNAL PROCESSING, VOLS 1 AND 2, PROCEEDINGS, 2003, : 600 - 604
  • [4] Color image segmentation using a Gaussian mixture model and a mean field annealing EM algorithm
    Park, JH
    Cho, WH
    Park, SY
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (10): : 2240 - 2248
  • [5] Mean field annealing EM for image segmentation
    Cho, WH
    Kim, SH
    Park, SY
    Park, JH
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2000, : 568 - 571
  • [6] Deterministic annealing EM and its application in natural image segmentation
    Park, J
    Cho, W
    Park, S
    COMPUTATIONAL AND INFORMATION SCIENCE, PROCEEDINGS, 2004, 3314 : 639 - 644
  • [7] Color image segmentation using mean shift and improved ant clustering
    刘玲星
    谭冠政
    M.Sami Soliman
    JournalofCentralSouthUniversity, 2012, 19 (04) : 1040 - 1048
  • [8] Color image segmentation using mean shift and improved ant clustering
    Ling-xing Liu
    Guan-zheng Tan
    M. Sami Soliman
    Journal of Central South University, 2012, 19 : 1040 - 1048
  • [9] Color Image Segmentation Using Mean Shift and Improved Spectral Clustering
    Gui, Yang
    Bai, Xiang
    Li, Zheng
    Yuan, Yun
    2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1386 - 1391
  • [10] Color image segmentation using mean shift and improved ant clustering
    Liu Ling-xing
    Tan Guan-zheng
    Soliman, M. Sami
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2012, 19 (04) : 1040 - 1048