Life cycle and nano-products: end-of-life assessment

被引:29
|
作者
Asmatulu, Eylem [1 ]
Twomey, Janet [1 ]
Overcash, Michael [1 ]
机构
[1] Wichita State Univ, Dept Ind & Mfg Engn, Wichita, KS 67260 USA
关键词
Nanoproducts; Life cycle end-of-life; Recycling; Environmental Impact; Life cycle analysis; Nanotechnology application;
D O I
10.1007/s11051-012-0720-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Understanding environmental impacts of nanomaterials necessitates analyzing the life cycle profile. The initial emphasis of nanomaterial life cycle studies has been on the environmental and health effects of nanoproducts during the production and usage stages. Analyzing the end-of-life (eol) stage of nanomaterials is also critical because significant impacts or benefits for the environment may arise at that particular stage. In this article, the Woodrow Wilson Center's Project on Emerging Nanotechnologies (PEN) Consumer Products Inventory (CPI) model was used, which contains a relatively large and complete nanoproduct list (1,014) as of 2010. The consumer products have wide range of applications, such as clothing, sports goods, personal care products, medicine, as well as contributing to faster cars and planes, more powerful computers and satellites, better micro and nanochips, and long-lasting batteries. In order to understand the eol cycle concept, we allocated 1,014 nanoproducts into the nine end-of-life categories (e. g., recyclability, ingestion, absorption by skin/public sewer, public sewer, burning/landfill, landfill, air release, air release/public sewer, and other) based on probable final destinations of the nanoproducts. This article highlights the results of this preliminary assessment of end-of-life stage of nanoproducts. The largest potential eol fate was found to be recyclability, however little literature appears to have evolved around nanoproduct recycling. At lower frequency is dermal and ingestion human uptake and then landfill. Release to water and air are much lower potential eol fates for current nanoproducts. In addition, an analysis of nano-product categories with the largest number of products listed indicated that clothes, followed by dermal-related products and then sports equipment were the most represented in the PEN CPI (http://www.nanotechproject.org/inventories/consumer/browse/categories/ 2010).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Life cycle and nano-products: end-of-life assessment
    Eylem Asmatulu
    Janet Twomey
    Michael Overcash
    Journal of Nanoparticle Research, 2012, 14
  • [2] Correction to: Addressing the use and end-of-life phase of pharmaceutical products in life cycle assessment
    Marc-William Siegert
    Annekatrin Lehmann
    Yasmine Emara
    Matthias Finkbeiner
    The International Journal of Life Cycle Assessment, 2020, 25 : 1633 - 1634
  • [3] Life cycle assessment of end-of-life engineered wood
    Farjana, Shahjadi Hisan
    Tokede, Olubukola
    Tao, Zhong
    Ashraf, Mahmud
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 887
  • [4] Life cycle assessment of the end-of-life phase of a residential building
    Vitale, Pierluca
    Arena, Noemi
    Di Gregorio, Fabrizio
    Arena, Umberto
    WASTE MANAGEMENT, 2017, 60 : 311 - 321
  • [5] Automobile life cycle assessment issues at end-of-life and recycling
    Funazaki, A
    Taneda, K
    Tahara, K
    Inaba, A
    JSAE REVIEW, 2003, 24 (04): : 381 - 386
  • [6] End-of-life flows of multiple cycle consumer products
    Tsiliyannis, C. A.
    WASTE MANAGEMENT, 2011, 31 (11) : 2302 - 2318
  • [7] Life cycle assessment of plastic waste end-of-life for India and Indonesia
    Neo, Edward Ren Kai
    Soo, Gibson Chin Yuan
    Tan, Daren Zong Loong
    Cady, Karina
    Tong, Kai Ting
    Low, Jonathan Sze Choong
    RESOURCES CONSERVATION AND RECYCLING, 2021, 174
  • [8] Life cycle assessment of end-of-life treatments for plastic film waste
    Hou, Ping
    Xu, Yifan
    Taiebat, Morteza
    Lastoskie, Christian
    Miller, Shelie A.
    Xu, Ming
    JOURNAL OF CLEANER PRODUCTION, 2018, 201 : 1052 - 1060
  • [9] Life cycle assessment of nine recovery methods for end-of-life tyres
    Clauzade, Catherine
    Osset, Philippe
    Hugrel, Charlotte
    Chappert, Aude
    Durande, Maxime
    Palluau, Magali
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2010, 15 (09): : 883 - 892
  • [10] Life cycle assessment of pharmaceutical packaging addressing end-of-life alternatives
    Bassani, Fabiana
    Rodrigues, Carla
    Freire, Fausto
    WASTE MANAGEMENT, 2024, 175 : 1 - 11