Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network

被引:24
|
作者
Lu, Feng-Yu [1 ,2 ,3 ]
Yin, Zhen-Qiang [1 ,2 ,3 ]
Wang, Chao [1 ,3 ]
Cui, Chao-Han [1 ,3 ]
Teng, Jun [1 ,3 ]
Wang, Shuang [1 ,3 ]
Chen, Wei [1 ,3 ]
Huang, Wei [2 ]
Xu, Bing-Jie [2 ]
Guo, Guang-Can [1 ,3 ]
Han, Zheng-Fu [1 ,3 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, CAS, Hefei 230026, Anhui, Peoples R China
[2] Inst Southwestern Commun, Sci & Technol Commun Secur Lab, Chengdu 610041, Sichuan, Peoples R China
[3] State Key Lab Cryptol, POB 5159, Beijing 100878, Peoples R China
基金
中国国家自然科学基金;
关键词
31;
D O I
10.1364/JOSAB.36.000B92
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Selection of parameters (e.g., the probability of choosing an X-basis or Z-basis, the intensity of signal state and decoy state, etc.) and system calibrating are more challenging when the number of users of a measurementdevice-independent quantum key distribution (MDI-QKD) network increases. At present, optimization algorithms are usually employed when searching for the best parameters. This method can find the optimized parameters accurately, but it may take a lot of time and hardware resources. This is a big problem in a large-scale MDI-QKD network. Here, we present, to the best of our knowledge, a new method, using a back propagation artificial neural network (BPNN) to predict, rather than search, the optimized parameters. Compared to optimization algorithms, our BPNN is faster and more lightweight, and it can save system resources. Another big problem brought by large-scale MDI-QKD networks is system recalibration. BPNN can support this work in real time, and it only needs to use some discarded data generated from the communication process, rather than adding additional devices or scanning the system. (C) 2019 Optical Society of America
引用
收藏
页码:B92 / B98
页数:7
相关论文
共 50 条
  • [1] Parameter optimization in satellite-based measurement-device-independent quantum key distribution
    Dong, Qin
    Huang, Guoqi
    Cui, Wei
    Jiao, Rongzhen
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01):
  • [2] Integrated measurement server for measurement-device-independent quantum key distribution network
    Wang, Ci-Yu
    Gao, Jun
    Jiao, Zhi-Qiang
    Qiao, Lu-Feng
    Ren, Ruo-Jing
    Feng, Zhen
    Chen, Yuan
    Yan, Zeng-Quan
    Wang, Yao
    Tang, Hao
    Jin, Xian-Min
    OPTICS EXPRESS, 2019, 27 (05): : 5982 - 5989
  • [3] Open-Destination Measurement-Device-Independent Quantum Key Distribution Network
    Cao, Wen-Fei
    Zhen, Yi-Zheng
    Zheng, Yu-Lin
    Zhao, Shuai
    Xu, Feihu
    Li, Li
    Chen, Zeng-Bing
    Liu, Nai-Le
    Chen, Kai
    ENTROPY, 2020, 22 (10) : 1 - 17
  • [4] Measurement-Device-Independent Quantum Key Distribution over Untrustful Metropolitan Network
    Tang, Yan-Lin
    Yin, Hua-Lei
    Zhao, Qi
    Liu, Hui
    Sun, Xiang-Xiang
    Huang, Ming-Qi
    Zhang, Wei-Jun
    Chen, Si-Jing
    Zhang, Lu
    You, Li-Xing
    Wang, Zhen
    Liu, Yang
    Lu, Chao-Yang
    Jiang, Xiao
    Ma, Xiongfeng
    Zhang, Qiang
    Chen, Teng-Yun
    Pan, Jian-Wei
    PHYSICAL REVIEW X, 2016, 6 (01):
  • [5] Regression-decision-tree based parameter optimization of measurement-device-independent quantum key distribution
    Liu, Tian-Le
    Xu, Xiao
    Fu, Bo-Wei
    Xu, Jia-Xin
    Liu, Jing-Yang
    Zhou, Xing-Yu
    Wang, Qin
    ACTA PHYSICA SINICA, 2023, 72 (11)
  • [6] Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution
    Xu, Feihu
    Xu, He
    Lo, Hoi-Kwong
    PHYSICAL REVIEW A, 2014, 89 (05):
  • [7] Measurement-device-independent Quantum Key Distribution based on W state
    Hu, Min
    Guo, Banghong
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [8] Satellite-based measurement-device-independent quantum key distribution
    Liang, Wentao
    Jiao, Rongzhen
    NEW JOURNAL OF PHYSICS, 2020, 22 (08):
  • [9] Chip-based measurement-device-independent quantum key distribution
    Semenenko, Henry
    Sibson, Philip
    Hart, Andy
    Thompson, Mark G.
    Rarity, John G.
    Erven, Chris
    OPTICA, 2020, 7 (03): : 238 - 242
  • [10] Measurement-device-independent entanglement-based quantum key distribution
    Yang, Xiuqing
    Wei, Kejin
    Ma, Haiqiang
    Sun, Shihai
    Liu, Hongwei
    Yin, Zhenqiang
    Li, Zuohan
    Lian, Shibin
    Du, Yungang
    Wu, Lingan
    PHYSICAL REVIEW A, 2016, 93 (05)