Selective bimetallic sites supported on graphene as a promising catalyst for CO2 Reduction: A first-principles study

被引:9
|
作者
Zhang, Run [1 ]
Zhang, Yaping [1 ]
Liu, Laibao [1 ]
Li, Xiaopeng [1 ]
Tang, Youhong [2 ]
Ni, Yuxiang [3 ]
Sun, Chenghua [4 ,5 ]
Zhang, Hongping [1 ]
机构
[1] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Engn Res Ctr Biomass Mat, Minist Educ,Sch Mat Sci & Engn, Mianyang 621010, Sichuan, Peoples R China
[2] Flinders Univ S Australia, Ctr NanoScale Sci & Technol, Coll Sci & Engn, Bedford Pk, SA 5042, Australia
[3] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Chengdu 600031, Sichuan, Peoples R China
[4] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Chem & Biotechnol, Hawthorn, Vic 3122, Australia
[5] Swinburne Univ Technol, Fac Sci Engn & Technol, Ctr Translat Atomat, Hawthorn, Vic 3122, Australia
关键词
Graphene; Bimetallic doping; CO 2 reduction reaction; Overpotential; Electroreduction; ELECTROCHEMICAL REDUCTION; HYDROCARBONS; MECHANISMS; ENERGETICS; ORIGIN; ENERGY; FUELS; ATOMS;
D O I
10.1016/j.apsusc.2022.152472
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing efficient and inexpensive electrocatalysts for CO2 reduction reaction (CRR) has been a key scientific issue. Several factors limit the electrocatalyst efficiency of materials, including the relatively high overpotential, low stability and low selectivity for CRR. The use of bimetallic catalyst systems is an efficient approach to improve the catalytic performance. In this study, by using the density functional theory (DFT) calculations, we explore the CRR processes of three different bimetal doped graphenes (M1M2/DG (M1, M2 = Cu, Fe, Ni)). Various reduction reaction pathways of CO2 lead to different products, including CH4, CH3OH, HCOOH and CO. The Eads of different intermediates on different M1M2/DG, the free energy variation and the overpotential of the different M1M2/DG were analyzed. The obtained results confirm the CO2 capture ability of all the studied M1M2/DG systems. The low overpotential of 0.49 V for Cu_Ni/DG is even lower than that of the most outstanding metallic electrocatalyst (Cu (21 1)). This work provides useful information for the development of efficient CRR electrocatalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Graphite-supported single copper catalyst for electrochemical CO2 reduction: A first-principles approach
    Lee, Chang-Mi
    Senthamaraikannan, Thillai Govindaraja
    Shin, Dong Yun
    Kwon, Jeong An
    Lim, Dong-Hee
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2021, 1201
  • [2] Bimetallic doped C2N catalyzed CO2 reduction to ethylene: A first-principles study
    Li, JiaZhen
    Meng, Yue
    Gao, Zhiyan
    Xie, Bo
    Xia, Shengjie
    Fu, Zhisheng
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 323
  • [3] First-principles design of selective Ag catalysts for CO2 electrochemical reduction
    Wang, Siwen
    Xin, Hongliang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [4] Bimetallenes for selective electrocatalytic conversion of CO2: a first-principles study
    Zhao, Zhonglong
    Lu, Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (25) : 12457 - 12462
  • [5] CO2 reduction performance of Cu/Er supported on N-doped graphene: A first principles study
    Zhang, Yaning
    Xu, Wenhai
    Kumar, Anuj
    Sun, Hao
    Cao, Aiqing
    Zhang, Zhuang
    Jiang, Zheheng
    Yang, Zuoyin
    Dong, Juncai
    Li, Yaping
    MOLECULAR CATALYSIS, 2023, 547
  • [6] A First-Principles Study of the Mechanism and Site Requirements for CO2 Methanation over CeO2-Supported Ru Catalyst
    Ma, Hong-Yan
    Wang, Gui-Chang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (33): : 18161 - 18169
  • [7] The first-principles calculation to predict electroreduction of CO2 to ethanol over Al/Cu(111) bimetallic catalyst
    Wang, Dan
    Qin, Rui-Cheng
    Qiu, Yong-Qing
    Liu, Chun-Guang
    MOLECULAR CATALYSIS, 2023, 547
  • [8] Graphene-Supported Monometallic and Bimetallic Dimers for Electrochemical CO2 Reduction
    He, Haiying
    Morrissey, Christopher
    Curtiss, Larry A.
    Zapol, Peter
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (50): : 28629 - 28636
  • [9] Co incorporated pentagraphene as an efficient single-atom catalyst for reduction of CO2: 2: First-principles investigations
    Rehman, Munir Ur
    Shang, Yan
    Wang, Ya
    Yang, Zhaodi
    Pei, Lei
    Yu, Hong
    Zhang, Guiling
    MOLECULAR CATALYSIS, 2024, 568
  • [10] Graphene Supported Tungsten Carbide as Catalyst for Electrochemical Reduction of CO2
    Ananthaneni, Sahithi
    Smith, Zachery
    Rankin, Rees B.
    CATALYSTS, 2019, 9 (07):