Thermal Transport in Graphene and Graphene-based Composites

被引:1
|
作者
Hu, Jiuning [1 ,2 ]
Park, Wonjun [1 ,2 ]
Ruan, Xiulin [2 ,3 ]
Chen, Yong P. [1 ,2 ,4 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
关键词
MOLECULAR-DYNAMICS; LAYER GRAPHENE; CONDUCTIVITY; NANORIBBONS; RECTIFICATION; HYDROCARBONS; ENERGY;
D O I
10.1149/05301.0041ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We theoretically and experimentally studied the thermal transport properties in various graphene-based systems. Firstly, we review our previous works of molecular dynamics simulations to study the thermal transport in graphene nanoribbons (GNRs). We also studied negative differential thermal conductance (NDTC) at large temperature biases in GNRs. We extended our study of NDTC in the diffusive limit into general one-dimensional thermal transport and found that NDTC is possible if thermal junctions are introduced. These findings are useful for future applications of controlling heat at nanoscale. Secondly, we describe our experimental work of synthesized graphene-based composites with fillers of reduced graphene oxide and polymers. We used 3 omega method to measure the thermal conductivity and found that the thermal conductivity can be tuned dramatically by the graphene filler concentration. Graphene-based composites are potentially promising as thermal interface materials, which have become increasingly important in modern heat management in many industrial applications.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [1] Phonons and thermal transport in graphene and graphene-based materials
    Nika, Denis L.
    Balandin, Alexander A.
    REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (03)
  • [2] Thermal transport in graphene-based nanocomposite
    Hu, Lin
    Desai, Tapan
    Keblinski, Pawel
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (03)
  • [3] Effective thermal conductivity of graphene-based composites
    Chu, Ke
    Jia, Cheng-chang
    Li, Wen-sheng
    APPLIED PHYSICS LETTERS, 2012, 101 (12)
  • [4] Graphene-based composites
    Huang, Xiao
    Qi, Xiaoying
    Boey, Freddy
    Zhang, Hua
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (02) : 666 - 686
  • [5] Interface thermal transport of graphene-based intralayer heterostructures
    Li, Sha
    Guo, Zhi-Xin
    Ding, J. W.
    PHYSICA B-CONDENSED MATTER, 2019, 561 : 164 - 169
  • [6] Graphene-based photocatalytic composites
    An, Xiaoqiang
    Yu, Jimmy C.
    RSC ADVANCES, 2011, 1 (08) : 1426 - 1434
  • [7] Flatness-dependent thermal conductivity of graphene-based composites
    Chu, Ke
    Li, Wen-sheng
    Tang, Fu-ling
    PHYSICS LETTERS A, 2013, 377 (12) : 910 - 914
  • [8] Graphene-based thermoplastic composites and their application for LED thermal management
    Cho, Er-Chieh
    Huang, Jui-Hsiung
    Li, Chiu-Ping
    Chang-Jian, Cai-Wan
    Lee, Kuen-Chan
    Hsiao, Yu-Sheng
    Huang, Jen-Hsien
    CARBON, 2016, 102 : 66 - 73
  • [9] Graphene-based thermal modulators
    Xiangjun Liu
    Gang Zhang
    Yong-Wei Zhang
    Nano Research, 2015, 8 : 2755 - 2762
  • [10] Graphene-based thermal modulators
    Liu, Xiangjun
    Zhang, Gang
    Zhang, Yong-Wei
    NANO RESEARCH, 2015, 8 (08) : 2755 - 2762