The smoots Package in R for Semiparametric Modeling of Trend Time Series

被引:1
|
作者
Feng, Yuanhua [1 ]
Gries, Thomas [1 ]
Letmathe, Sebastian [1 ]
Schulz, Dominik [1 ]
机构
[1] Paderborn Univ, Fac Business Adm & Econ, Dept Econ, Warburger Str 100, D-33098 Paderborn, Germany
来源
R JOURNAL | 2022年 / 14卷 / 01期
关键词
BANDWIDTH SELECTOR; BUSINESS CYCLES; REGRESSION; VARIANCE;
D O I
10.1258/reare/021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is an introduction to the new package in R called smoots (smoothing time series), developed for data-driven local polynomial smoothing of trend-stationary time series. Functions for data-driven estimation of the first and second derivatives of the trend are also built-in. It is first applied to monthly changes of the global temperature. The quarterly US-GDP series shows that this package can also be well applied to a semiparametric multiplicative component model for non-negative time series via the log-transformation. Furthermore, we introduced a semiparametric Log-GARCH and a semiparametric Log-ACD model, which can be easily estimated by the smoots package. Of course, this package applies to suitable time series from any other research area. The smoots package also provides a useful tool for teaching time series analysis, because many practical time series follow an additive or a multiplicative component model.
引用
收藏
页码:182 / 195
页数:14
相关论文
共 50 条
  • [1] Semiparametric smooth transition modeling for nonlinear time series
    Thomakos, Dimitrios D.
    IN THE FRONTIERS OF COMPUTATIONAL SCIENCE, 2005, 3 : 343 - 359
  • [2] TSclust: An R Package for Time series clustering
    Montero, Pablo
    Vilar, Jose A.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 62 (01): : 1 - 43
  • [3] Semiparametric estimation and testing of the trend of temperature series
    Gao, Jiti
    Hawthorne, Kim
    ECONOMETRICS JOURNAL, 2006, 9 (02): : 332 - 355
  • [4] Semiparametric time series regression modeling with a diverging number of parameters
    Zheng, Shengchao
    Li, Degao
    STATISTICA NEERLANDICA, 2018, 72 (02) : 90 - 108
  • [5] Ordinal Time Series Analysis with the R Package otsfeatures
    Lopez-Oriona, Angel
    Vilar, Jose A.
    MATHEMATICS, 2023, 11 (11)
  • [6] KarsTS: an R package for microclimate time series analysis
    M. Sáez
    C. Pla
    S. Cuezva
    D. Benavente
    Earth Science Informatics, 2019, 12 : 685 - 697
  • [7] rainbow: An R Package for Visualizing Functional Time Series
    Shang, Han Lin
    R JOURNAL, 2011, 3 (02): : 54 - 59
  • [8] Time Series Forecasting with KNN in R: the tsfknn Package
    Martinez, Francisco
    Frias, Maria P.
    Charte, Francisco
    Rivera, Antonio J.
    R JOURNAL, 2019, 11 (02): : 229 - 242
  • [9] predtoolsTS: R package for streamlining time series forecasting
    Francisco Charte
    Alberto Vico
    María D. Pérez-Godoy
    Antonio J. Rivera
    Progress in Artificial Intelligence, 2019, 8 : 505 - 510
  • [10] ftsa: An R Package for Analyzing Functional Time Series
    Shang, Han Lin
    R JOURNAL, 2013, 5 (01): : 64 - 72