Beyond pairwise clustering

被引:0
|
作者
Agarwal, S [1 ]
Lim, J [1 ]
Zelnik-Manor, L [1 ]
Perona, P [1 ]
Kriegman, D [1 ]
Belongie, S [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92103 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms.
引用
收藏
页码:838 / 845
页数:8
相关论文
共 50 条
  • [1] Beyond Partitions: Allowing Overlapping Groups in Pairwise Clustering
    Torsello, Andrea
    Bulo, Samuel Rota
    Pelillo, Marcello
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 709 - 712
  • [2] A randomized algorithm for pairwise clustering
    Gdalyahu, Y
    Weinshall, D
    Werman, M
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 424 - 430
  • [3] Pairwise clustering and graphical models
    Shental, N
    Zomet, A
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 185 - 192
  • [4] Dominant sets and pairwise clustering
    Pavan, Massimiliano
    Pelillo, Marcello
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (01) : 167 - 172
  • [5] Pairwise data clustering and applications
    Wu, XD
    Chen, DZ
    Mason, JJ
    Schmid, SR
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 455 - 466
  • [6] Document clustering with pairwise constraints
    Kreesuradej, W
    Suwanlamai, A
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2006, 20 (02) : 241 - 254
  • [7] Clustering from Sparse Pairwise Measurements
    Saade, Alaa
    Krzakala, Florent
    Lelarge, Marc
    Zdeborova, Lenka
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 780 - 784
  • [8] Color image quantization by pairwise clustering
    Velho, L
    Gomes, J
    Sobreiro, MVR
    X BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 1997, : 203 - 210
  • [9] Maximum Margin Clustering with Pairwise Constraints
    Hu, Yang
    Wang, Jingdong
    Yu, Nenghai
    Hua, Xian-Sheng
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 253 - +
  • [10] COBRAS: Interactive Clustering with Pairwise Queries
    Van Craenendonck, Toon
    Dumancic, Sebastijan
    Van Wolputte, Elia
    Blockeel, Hendrik
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 353 - 366