Long-term (2002-2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta

被引:88
|
作者
Kang, Na [1 ]
Kumar, K. Raghavendra [1 ]
Hu, Kang [1 ]
Yu, Xingna [1 ]
Yin, Yan [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys,Key Lab Aerosol Cloud Precipit, Key Lab Meteorol Disaster,Collaborat Innovat Ctr, Minist Educ KLME,Int Joint Lab Climate & Environm, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
MODIS; Aerosol optical depth; Trend analysis; Aerosol type; HYSPLIT; East China; OPTICAL DEPTH RETRIEVALS; SPATIOTEMPORAL VARIATION; ANGSTROM EXPONENT; AERONET; CLIMATOLOGY; IMPACT; DISCRIMINATION; PARAMETERS; NETWORK; QUALITY;
D O I
10.1016/j.atmosres.2016.06.008
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The present study aims to investigate spatio-temporal evolution and trend in the aerosol optical properties (aerosol optical depth, AOD; Angstrom exponent, AE), qualitatively identify different types and origin of aerosols over an urban city, Nanjing in the Yangtze River Delta, East China. For this purpose, the Collection 5.1 Level-2 data obtained from the Moderate resolution Imaging Spectroradiometer (MODIS) sensor onboard Terra and Aqua satellites and the Multi-angle Imaging Spectroradiometer (MISR) instrument for the period between 2002 and 2014 have been analyzed. An inter-comparison and validation of AOD were performed against the AOD measurements obtained from the ground-based Aerosol Robotic Network (AERONET) sunphotometer. The MODIS AOD(550) exhibited wide spatial and temporal distributions over East China, while MISR AOD(555) was consistently lower than that of Terra and Aqua AOD(550) values. The temporal variations (monthly and seasonal mean) of MODIS (Terra and Aqua) and MISR AOD values exhibited a similar pattern. The seasonal mean AOD(550) (AE(470-660)) was found to be maximum with 0.97 +/- 0.48 during summer (1.16 +/- 033 in summer) and a minimum of 0.61 +/- 0.28 during the winter season (0.80 +/- 0.28 in spring). The annual mean Terra AOD(550) at Nanjing showed a strong decreasing trend (-0.70% year(-1)), while the Aqua exhibited a slight increasing trend ( +0.01 year(-1)) during the study period. Seasonal air mass back-trajectories obtained from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model were also computed to infer on the transport component over the study region. Different aerosol types were identified via the relationship between AOD(550) and fine mode fraction, which reveals that the biomass burning/urban-industrial type aerosols (desert dust) are abundant over the region in summer (spring), apart from the mixed aerosol type. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 43
页数:15
相关论文
empty
未找到相关数据