Radiomics Analysis of Multi-Phase DCE-MRI in Predicting Tumor Response to Neoadjuvant Therapy in Breast Cancer

被引:19
|
作者
Peng, Shuyi [1 ,2 ]
Chen, Leqing [1 ,2 ]
Tao, Juan [1 ,2 ]
Liu, Jie [1 ,2 ]
Zhu, Wenying [1 ,2 ]
Liu, Huan [3 ]
Yang, Fan [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Radiol, Wuhan 430022, Peoples R China
[2] Hubei Prov Key Lab Mol Imaging, Wuhan 430022, Peoples R China
[3] GE Healthcare, Precis Healthcare Inst, Shanghai 201203, Peoples R China
关键词
breast cancer; magnetic resonance imaging; radiomics; neoadjuvant treatment; treatment response; PATHOLOGICAL RESPONSE; SYSTEMIC THERAPY; TEXTURE ANALYSIS; CHEMOTHERAPY; HETEROGENEITY; FEATURES;
D O I
10.3390/diagnostics11112086
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: To explore whether the pretreatment dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and radiomics signatures were associated with pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer. Method: A retrospective review of 70 patients with breast invasive carcinomas proved by biopsy between June 2017 and October 2020 (26 patients were pathological complete response, and 44 patients were non-pathological complete response). Within the pre-contrast and five post-contrast dynamic series, a total of 1037 quantitative imaging features were extracted from in each phase. Additionally, the & UDelta;features (the difference between the features before and after the comparison) were used for subsequent analysis. The least absolute shrinkage and selection operator (LASSO) regression method was used to select features related to pCR, and then use these features to train multiple machine learning classifiers to predict the probability of pCR for a given patient. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the predictive performances of the radiomics model for each of the five phases of time points. Result: Among the five phases, each individual phase performed with AUCs ranging from 0.845 to 0.919 in predicting pCR. The best single phases performance was given by the 3rd phase (AUC = 0.919, sensitivity 0.885, specificity 0.864). 5 of the features have significant differences between pCR and non-pCR groups in each phase, most features reach their maximum or minimum in the 2nd or 3rd phase. Conclusion: The radiomic features extracted from each phase of pre-treatment DCE-MRI possess discriminatory power to predict tumor response.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] DCE-MRI radiomics features for predicting breast cancer neoadjuvant therapy response
    Kontopodis, E.
    Manikis, G. C.
    Skepasianos, I.
    Tzagkarakis, K.
    Nikiforaki, K.
    Papadakis, G. Z.
    Maris, T. G.
    Papadaki, E.
    Karantanas, A.
    Marias, K.
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 203 - 208
  • [2] Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer
    Zeng, Qiao
    Xiong, Fei
    Liu, Lan
    Zhong, Linhua
    Cai, Fengqin
    Zeng, Xianjun
    ACADEMIC RADIOLOGY, 2023, 30 : S38 - S49
  • [3] Radiomics Based on Baseline DCE-MRI is Predictive of Tumor Pathological Complete Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients
    Granzier, R.
    Ibrahim, A.
    Woodruff, H.
    van Nijnatten, T.
    Samiei, S.
    de Boer, M.
    Heuts, E.
    Hulsmans, F.
    Lambin, P.
    Smidt, M.
    Lobbes, M.
    ANNALS OF SURGICAL ONCOLOGY, 2019, 26 : S80 - S81
  • [4] Radiomics in the Analysis of Breast Cancer Heterogeneity On DCE-MRI
    Li, H.
    Lan, L.
    Drukker, K.
    Perou, C.
    Giger, M.
    MEDICAL PHYSICS, 2015, 42 (06) : 3588 - 3588
  • [5] Scale-space DCE-MRI radiomics analysis based on Gabor filters for predicting breast cancer therapy response
    Manikis, G. C.
    Venianaki, M.
    Skepasianos, I.
    Papadakis, G. Z.
    Maris, T. G.
    Agelaki, S.
    Karantanas, A.
    Marias, K.
    2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2019, : 994 - 1001
  • [6] quantitative DCE-MRI to predict the response of primary breast cancer to neoadjuvant therapy
    Li, X.
    Arlinghaus, L. R.
    Chakravarthy, A. B.
    Abramson, R. G.
    Abramson, V. G.
    Farley, J.
    Ayers, G. D.
    Mayer, I. A.
    Kelley, M. C.
    Meszoely, I. M.
    Means-Powell, J.
    Grau, A. M.
    Sanders, M. E.
    Yankeelov, T. E.
    CANCER RESEARCH, 2012, 72
  • [7] DCE-MRI Analysis Methods for Predicting the Response of Breast Cancer to Neoadjuvant Chemotherapy: Pilot Study Findings
    Li, Xia
    Arlinghaus, Lori R.
    Ayers, Gregory D.
    Chakravarthy, A. Bapsi
    Abramson, Richard G.
    Abramson, Vandana G.
    Atuegwu, Nkiruka
    Farley, Jaime
    Mayer, Ingrid A.
    Kelley, Mark C.
    Meszoely, Ingrid M.
    Means-Powell, Julie
    Grau, Ana M.
    Sanders, Melinda
    Bhave, Sandeep R.
    Yankeelov, Thomas E.
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (04) : 1592 - 1602
  • [8] Habitat Analysis of DCE-MRI Predicts for Response to Neoadjuvant Chemotherapy in Breast Cancer
    Silver, Benjamin
    Obeid, Jean-Pierre
    Chan, Yu-Cherng C.
    Takita, Cristiane
    Stoyanova, Radka
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 101 (02): : E12 - E13
  • [9] Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response
    Machireddy, Archana
    Thibault, Guillaume
    Huang, Wei
    Song, Xubo
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 682 - 685
  • [10] DCE-MRI radiomics nomogram can predict response to neoadjuvant chemotherapy in esophageal cancer
    Qu, Jinrong
    Ma, Ling
    Lu, Yanan
    Wang, Zhaoqi
    Guo, Jia
    Zhang, Hongkai
    Yan, Xu
    Liu, Hui
    Kamel, Ihab R.
    Qin, Jianjun
    Li, Hailiang
    DISCOVER ONCOLOGY, 2022, 13 (01)