Bayesian Probabilistic Matrix Factorization- A dive towards Recommendation

被引:0
|
作者
Akulwar, Pooja [1 ]
Pardeshi, Sujata [1 ]
机构
[1] SSDGCT Sanjay Ghodawat Grp Inst, Comp Sci & Engn Dept, Atigre, India
关键词
Matrix factorization; Bayesian Probabilistic Matrix Factorization; Cholesky decomposition; Gibbs sampling technique; K nearest neighbor;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Matrix factorization is a well known technique which discovers latent features among users and items. This method brings the advantage of reducing data sparcity and cold start problem. The different Matrix factorization methods such as SVD, PMF, NMF etc. exists. But all these suffer from certain drawback especially when dataset is extremely sparse. The Bayesian Probabilistic Matrix Factorization (BPMF) method proves to be more efficient and provides prediction that leads to better accuracy. The significance of BPMF is to avoid parameter tuning and provides predictive distribution. To enhance user satisfaction and loyalty particularly when the huge volume of data is available, there is need of recommender system. Hence, the idea of BPMF is extended towards recommendation where top N queries are recommended to users using BPMF method liaison with Cholesky decomposition, Gibbs sampling technique, K nearest neighbor method. The experimental work describes that the BPMF method when used in query recommendation provides better results.
引用
收藏
页码:544 / 548
页数:5
相关论文
共 50 条
  • [1] Bayesian Probabilistic Matrix Factorization with Social Relations and Item Contents for recommendation
    Liu, Juntao
    Wu, Caihua
    Liu, Wenyu
    DECISION SUPPORT SYSTEMS, 2013, 55 (03) : 838 - 850
  • [2] Distributed Bayesian Probabilistic Matrix Factorization
    Aa, Tom Vander
    Chakroun, Imen
    Haber, Tom
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 1030 - 1039
  • [3] Dynamic Bayesian Probabilistic Matrix Factorization
    Chatzis, Sotirios P.
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1731 - 1737
  • [4] Distributed Bayesian Probabilistic Matrix Factorization
    Vander Aa, Tom
    Chakroun, Imen
    Haber, Tom
    2016 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2016, : 346 - 349
  • [5] A Unified Probabilistic Matrix Factorization Recommendation Algorithm
    Zheng Dongxia
    Xiong Yaohua
    2018 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2018), 2018, : 246 - 249
  • [6] A Novel Probabilistic Matrix Factorization for Personal Recommendation
    Hu, Tianwei
    Lian, Cheng
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4475 - 4480
  • [7] Local Probabilistic Matrix Factorization for Personal Recommendation
    Ma, Wenping
    Wu, Yue
    Gong, Maoguo
    Qin, Can
    Wang, Shanfeng
    2017 13TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2017, : 97 - 101
  • [8] Polyphase Matrix Factorization- A Simplified Explanation
    Bhushan, D. Bharath
    Soman, K. P.
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN RECENT TECHNOLOGIES IN COMMUNICATION AND COMPUTING (ARTCOM 2009), 2009, : 376 - 378
  • [9] Bayesian Hierarchical Kernelized Probabilistic Matrix Factorization
    Yang, Hongxia
    Wang, Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (07) : 2528 - 2540
  • [10] A Bandit Method Using Probabilistic Matrix Factorization in Recommendation
    涂世涛
    朱兰娟
    JournalofShanghaiJiaotongUniversity(Science), 2015, 20 (05) : 535 - 539