Supporting Trustworthy Artificial Intelligence via Bayesian Argumentation

被引:0
|
作者
Cerutti, Federico [1 ,2 ]
机构
[1] Univ Brescia, Dept Informat Engn, Via Branze 38, I-25123 Brescia, Italy
[2] Cardiff Univ, Sch Comp Sci, 5 Parade, Cardiff CF24 3AA, Wales
关键词
Statistical learning; Argumentation; Generative models; UNCERTAINTY;
D O I
10.1007/978-3-031-08421-8_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces argumentative-generative models for statistical learning-i.e., generative statistical models seen from a Bayesian argumentation perspective-and shows how they support trustworthy artificial intelligence (AI). Generative Bayesian approaches are already very promising for achieving robustness against adversarial attacks, a fundamental component of trustworthy AI. This paper shows how Bayesian argumentation can help us achieve transparent assessments of epistemic uncertainty and testability of models, two necessary ingredients for trustworthy AI. We also discuss the limitations of this approach, notably those traditionally linked to Bayesian methods.
引用
收藏
页码:377 / 388
页数:12
相关论文
共 50 条
  • [1] Trustworthy artificial intelligence
    Simion M.
    Kelp C.
    Asian Journal of Philosophy, 2 (1):
  • [2] Trustworthy artificial intelligence
    Scott Thiebes
    Sebastian Lins
    Ali Sunyaev
    Electronic Markets, 2021, 31 : 447 - 464
  • [3] Trustworthy artificial intelligence
    Thiebes, Scott
    Lins, Sebastian
    Sunyaev, Ali
    ELECTRONIC MARKETS, 2021, 31 (02) : 447 - 464
  • [4] Supporting Global Collective Intelligence via Artificial Intelligence
    Zeng, Daniel
    Mao, Wenji
    IEEE INTELLIGENT SYSTEMS, 2014, 29 (02) : 2 - 4
  • [5] Argumentation in artificial intelligence
    Bench-Capon, T. J. M.
    Dunne, Paul E.
    ARTIFICIAL INTELLIGENCE, 2007, 171 (10-15) : 619 - 641
  • [6] Explainable and Trustworthy Artificial Intelligence
    Alonso-Moral, Jose Maria
    Mencar, Corrado
    Ishibuchi, Hisao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2022, 17 (01) : 14 - 15
  • [7] Trustworthy Artificial Intelligence: A Review
    Kaur, Davinder
    Uslu, Suleyman
    Rittichier, Kaley J.
    Durresi, Arjan
    ACM COMPUTING SURVEYS, 2023, 55 (02)
  • [8] Explainable Artificial Intelligence for Bayesian Neural Networks: Toward Trustworthy Predictions of Ocean Dynamics
    Clare, Mariana C. A.
    Sonnewald, Maike
    Lguensat, Redouane
    Deshayes, Julie
    Balaji, V
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (11)
  • [9] Artificial Intelligence in nursing: trustworthy or reliable?
    Higgins, Oliver
    Chalup, Stephan K.
    Wilson, Rhonda L.
    JOURNAL OF RESEARCH IN NURSING, 2024, 29 (02) : 143 - 153
  • [10] Artificial intelligence in nursing: trustworthy or reliable?
    Higgins, Oliver
    Brooke, L. Short
    Stephan, K. Chalup
    Rhonda, L. Wilson
    INTERNATIONAL JOURNAL OF MENTAL HEALTH NURSING, 2023, 32 : 26 - 26