Simple adaptive trajectory tracking control of underactuated autonomous underwater vehicles under LOS range and angle constraints

被引:23
|
作者
Li, Jian [1 ]
Du, Jialu [1 ]
Zhu, Guibing [1 ]
Lewis, Frank L. [2 ]
机构
[1] Dalian Maritime Univ, Sch Marine Elect Engn, Dalian 116026, Peoples R China
[2] Univ Texas Arlington, Res Inst, Ft Worth, TX 76118 USA
来源
IET CONTROL THEORY AND APPLICATIONS | 2020年 / 14卷 / 02期
关键词
stability; uncertain systems; trajectory control; control system synthesis; closed loop systems; adaptive control; autonomous underwater vehicles; parameter estimation; underactuated autonomous underwater vehicles; simple adaptive trajectory tracking control scheme; unknown dynamic parameters; LOS range; simple error mapping function; angle constraint problems; AUVs trajectory tracking; constraint boundaries; simple adaptive trajectory tracking control law; dynamic surface control technique; adaptive laws; closed-loop control system; asymmetric time-varying line-of-sight range; transform variable boundedness; compounded uncertain item; linear parametric form; virtual parameter estimation; strict stability analysis; DYNAMIC SURFACE CONTROL; PRESCRIBED PERFORMANCE GUARANTEES; UNCERTAIN NONLINEAR-SYSTEMS; FOLLOWER FORMATION CONTROL; FAULT-TOLERANT CONTROL; ROBUST; VESSELS;
D O I
10.1049/iet-cta.2018.6356
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, the authors propose a simple adaptive trajectory tracking control scheme for underactuated autonomous underwater vehicles (AUVs) subject to unknown dynamic parameters and disturbances under asymmetric time-varying line-of-sight (LOS) range and angle constraints. A simple error mapping function is constructed to transform the LOS range and angle constraint problems of AUVs trajectory tracking into the problem of the boundedness of transform variable, such that any constraint boundaries of LOS range and angle can be handled. The compounded uncertain item caused by the unknown dynamic parameters and disturbances is transformed into a linear parametric form with only three unknown parameters called virtual parameters. Based on the above, a simple adaptive trajectory tracking control law is developed using dynamic surface control technique, where the adaptive laws online provide the estimations of virtual parameters. As a result, the proposed trajectory tracking control scheme is simple to compute and easy to implement in engineering applications. Strict stability analysis indicates that the designed control law makes AUVs track the desired trajectory within the LOS range and angle constraints and guarantees the boundedness of all signals of the closed-loop control system. Simulation results and comparison verify the effectiveness of the designed control scheme.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 50 条
  • [1] Adaptive Asymptotic Tracking Control for Underactuated Autonomous Underwater Vehicles With State Constraints
    Yang, Xian
    Yan, Jing
    Chen, Chuanzhi
    Hua, Changchun
    Guan, Xinping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 18485 - 18500
  • [2] Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles
    Heshmati-Alamdari, Shahab
    Nikou, Alexandros
    Dimarogonas, Dimos V.
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 8311 - 8316
  • [3] Fast Trajectory Tracking Control of Underactuated Autonomous Underwater Vehicles
    Qiao, Lei
    Zhang, Weidong
    2018 IEEE 8TH INTERNATIONAL CONFERENCE ON UNDERWATER SYSTEM TECHNOLOGY: THEORY AND APPLICATIONS (USYS), 2018,
  • [4] Command filtered adaptive NN trajectory tracking control of underactuated autonomous underwater vehicles
    Li, Jian
    Du, Jialu
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 1 - 6
  • [5] Robust adaptive trajectory tracking control of underactuated autonomous underwater vehicles with prescribed performance
    Li, Jian
    Du, Jialu
    Sun, Yuqing
    Lewis, Frank L.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (14) : 4629 - 4643
  • [6] Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles in Uncertain Environments
    Heshmati-Alamdari, Shahab
    Nikou, Alexandros
    Dimarogonas, Dimos V.
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2021, 18 (03) : 1288 - 1301
  • [7] Three-dimensional trajectory tracking control of underactuated autonomous underwater vehicles
    Chu, Zhenzhong
    Zhang, Xuan
    Zhu, Daqi
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2020, 84 (1-4) : 28 - 58
  • [8] Robust platoon control of underactuated autonomous underwater vehicles subjected to nonlinearities, uncertainties and range and angle constraints
    Shojaei, Khoshnam
    Chatraei, Abbas
    APPLIED OCEAN RESEARCH, 2021, 110
  • [9] Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles
    Elmokadem, Taha
    Zribi, Mohamed
    Youcef-Toumi, Kamal
    OCEAN ENGINEERING, 2017, 129 : 613 - 625
  • [10] Path Tracking Control for Underactuated Autonomous Underwater Vehicles Using Approach Angle
    Kim, Kyoung Joo
    Park, Jin Bae
    Choi, Yoon Ho
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (04) : 760 - 766