Cheetah: Accelerating Database Queries with Switch Pruning

被引:2
|
作者
Tirmazi, Muhammad [1 ]
Ben Basat, Ran [1 ]
Gao, Jiaqi [1 ]
Yu, Minlan [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
关键词
Databases; Programmable Switches; P4; Algorithms; Pruning;
D O I
10.1145/3342280.3342311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern database systems are growing increasingly distributed and struggle to reduce the query completion time with a large volume of data. In this poster, we propose to leverage programmable switches in the network to offload part of the query computation to the switch. While switches provide high performance, they also have many resource and programming constraints that make it hard to implement diverse database queries. To fit in these constraints, we introduce the concept of data pruning - filtering out entries which are guaranteed not to affect the output. The database system then runs the same query, but on the pruned data, which significantly reduces the processing time. We propose a set of pruning algorithms for a variety of queries. We implement our system, Cheetah, on a Barefoot Tofino switch and Spark. Our evaluation on the Berkeley AMPLab benchmark shows up to 3x improvement in the query completion time compared to Apache Spark.
引用
收藏
页码:72 / 74
页数:3
相关论文
共 50 条
  • [1] Cheetah: Accelerating Database Queries with Switch Pruning
    Tirmazi, Muhammad
    Ben Basat, Ran
    Gao, Jiaqi
    Yu, Minlan
    SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 2407 - 2422
  • [2] Accelerating queries by pruning XML documents
    Bressan, S
    Catania, B
    Lacroix, Z
    Li, YG
    Maddalena, A
    DATA & KNOWLEDGE ENGINEERING, 2005, 54 (02) : 211 - 240
  • [3] Accelerating multilevel secure database queries using P-tree technology
    Rahal, I
    Perrizo, W
    COMPUTERS AND THEIR APPLICATIONS, 2003, : 139 - 142
  • [4] Cheetah: Optimizing and Accelerating Homomorphic Encryption for Private Inference
    Reagen, Brandon
    Choi, Woo-Seok
    Ko, Yeongil
    Lee, Vincent T.
    Lee, Hsien-Hsin S.
    Wei, Gu-Yeon
    Brooks, David
    2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021), 2021, : 26 - 39
  • [5] OPTIMIZE DATABASE QUERIES
    CUADRADO, JL
    BYTE, 1995, 20 (07): : 57 - &
  • [6] Undeniable database queries
    Buldas, A
    Roos, M
    Willemson, J
    DATABASES AND INFORMATION SYSTEMS II, 2002, : 43 - 54
  • [7] On the complexity of database queries
    Papadimitriou, CH
    Yannakakis, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1999, 58 (03) : 407 - 427
  • [8] Mutating database queries
    Tuya, Javier
    Suarez-Cabal, Ma Jose
    de la Riva, Claudio
    INFORMATION AND SOFTWARE TECHNOLOGY, 2007, 49 (04) : 398 - 417
  • [9] Analogical Database Queries
    Beltran, William Correa
    Jaudoin, Helene
    Pivert, Olivier
    FLEXIBLE QUERY ANSWERING SYSTEMS 2015, 2016, 400 : 201 - 213
  • [10] THE ANSWERABILITY OF DATABASE QUERIES
    EINDOR, P
    SPIEGLER, I
    INFORMATION SYSTEMS, 1985, 10 (03) : 261 - 270