Dissipation of runaway current by massive gas injection on J-TEXT

被引:7
|
作者
Wei, Y. N. [1 ]
Yan, W. [1 ]
Chen, Z. Y. [1 ,2 ]
Tong, R. H. [1 ]
Lin, Z. F. [1 ]
Zhang, X. L. [1 ]
Jiang, Z. H. [1 ]
Yang, Z. J. [1 ]
Ding, Y. H. [1 ]
Liang, Y. [1 ,3 ,4 ]
机构
[1] Huazhong Univ Sci & Technol, Int Joint Res Lab Magnet Confinement Fus & Plasma, State Key Lab Adv Electromagnet Engn & Technol, Sch Elect & Elect Engn, Wuhan 430074, Hubei, Peoples R China
[2] Chengdu Univ, Chengdu 610106, Sichuan, Peoples R China
[3] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[4] Chinese Acad Sci, Inst Plasma Phys, POB 1126, Hefei 230031, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
MGI; runaway current; dissipation; assimilation;
D O I
10.1088/1361-6587/ab52c8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Plasma disruption is one of the major challenges for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) in disruptions. Current researches find that the generation of REs may be hard to totally suppress during the disruptions, and lead to the formation of large runaway current in future fusion devices. Runaway currents carry huge magnetic and kinetic energies that need to be dissipated safely. Runaway current dissipation by high-Z impurities has been performed on J-TEXT. Runaway currents are formed by an injection of ?10(19) argon atoms, and then large quantities of argon or krypton impurities are injected by the massive gas injection valve to dissipate the runaway current during the runaway current plateau phase. The dissipation efficiency increases with the increase of injected impurity quantity. When the injected impurity quantity exceeds 210(21), the dissipation efficiency becomes saturated. Up to a 28 MA s(?1) runaway current dissipation rate and a 15% energy dissipation rate can be achieved. Analysis shows that the saturation of dissipation efficiency is caused by the decrease of impurity assimilation rate with the increase of total injected impurity quantity. The decrease of impurity assimilation rate may be caused by the saturation of impurity density growth rate during the short dissipation phase. A simple estimate also shows that the increase of internal inductance leads to the slowing down of the growth of runaway current dissipation rate during the runaway current decay phase. The results may have important implication for ITER disruption mitigation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The behavior of runaway current in massive gas injection fast shutdown plasmas in J-TEXT
    Chen, Z. Y.
    Huang, D. W.
    Luo, Y. H.
    Tang, Y.
    Dong, Y. B.
    Zeng, L.
    Tong, R. H.
    Wang, S. Y.
    Wei, Y. N.
    Wang, X. H.
    Jian, X.
    Li, J. C.
    Zhang, X. Q.
    Rao, B.
    Yan, W.
    Ma, T. K.
    Hu, Q. M.
    Yang, Z. J.
    Gao, L.
    Ding, Y. H.
    Wang, Z. J.
    Zhang, M.
    Zhuang, G.
    Pan, Y.
    Jiang, Z. H.
    NUCLEAR FUSION, 2016, 56 (11)
  • [2] Runaway current suppression by secondary massive gas injection during the disruption mitigation phase on J-TEXT
    Wei, Y. N.
    Yan, W.
    Chen, Z. Y.
    Tong, R. H.
    Jiang, Z. H.
    Yang, Z. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (08)
  • [3] Overview of runaway current suppression and dissipation on J-TEXT tokamak
    陈忠勇
    林志芳
    严伟
    黄都伟
    魏禹农
    李由
    蔡念恒
    胡捷
    丁永华
    梁云峰
    江中和
    J-TEXT Team
    Plasma Science and Technology, 2022, 24 (12) : 115 - 125
  • [4] Overview of runaway current suppression and dissipation on J-TEXT tokamak
    陈忠勇
    林志芳
    严伟
    黄都伟
    魏禹农
    李由
    蔡念恒
    胡捷
    丁永华
    梁云峰
    江中和
    JTEXT Team
    Plasma Science and Technology, 2022, (12) : 115 - 125
  • [5] Overview of runaway current suppression and dissipation on J-TEXT tokamak
    Chen, Zhongyong
    Lin, Zhifang
    Yan, Wei
    Huang, Duwei
    Wei, Yunong
    LI, You
    Cai, Nianheng
    Hu, Jie
    Ding, Yonghua
    Liang, Yunfeng
    Jiang, Zhonghe
    PLASMA SCIENCE & TECHNOLOGY, 2022, 24 (12)
  • [6] Experimental study of the runaway current in the J-TEXT Tokamak
    Y. H. Luo
    Z. Y. Chen
    X. Q. Zhang
    D. W. Huang
    W. Jin
    Y. H. Huang
    Y. Tang
    J. C. Li
    R. H. Tong
    W. Yan
    G. Zhuang
    Journal of the Korean Physical Society, 2014, 64 : 405 - 409
  • [7] Experimental study of the runaway current in the J-TEXT Tokamak
    Luo, Y. H.
    Chen, Z. Y.
    Zhang, X. Q.
    Huang, D. W.
    Jin, W.
    Huang, Y. H.
    Tang, Y.
    Li, J. C.
    Tong, R. H.
    Yan, W.
    Zhuang, G.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 64 (03) : 405 - 409
  • [8] Measurements of impurity mixing efficiency during massive gas injection in J-TEXT
    Li, W.
    Tong, R. H.
    Bai, W.
    Huang, D. W.
    Yan, W.
    Wei, Y. N.
    Lin, Z. F.
    Zhang, X. L.
    Shi, P.
    Li, Y.
    Yang, H. Y.
    Hu, J.
    Wang, D. Q.
    Huang, Y.
    Zhong, Y.
    Fang, J. G.
    Chen, Z. Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)
  • [9] Suppression of runaway current generation by supersonic molecular beam injection during disruptions on J-TEXT
    Huang, D. W.
    Chen, Z. Y.
    Tong, R. H.
    Yan, W.
    Wang, S. Y.
    Wei, Y. N.
    Ma, T. K.
    Dai, A. J.
    Wang, X. L.
    Jiang, Z. H.
    Yang, Z. J.
    Zhuang, G.
    Pan, Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (08)
  • [10] Comparison of disruption mitigation from shattered pellet injection with massive gas injection on J-TEXT
    Li, Y.
    Chen, Z. Y.
    Yan, W.
    Wei, Y. N.
    Tong, R. H.
    Lin, Z. F.
    Li, W.
    Bai, W.
    Wang, N. C.
    Li, D.
    Chen, Z. P.
    Jiang, Z. H.
    Yang, Z. J.
    Ding, Y. H.
    Pan, Y.
    NUCLEAR FUSION, 2021, 61 (12)