Electrochemical evaluation of different graphene/sulfur composite synthesis routes in all-solid-state lithium-sulfur batteries

被引:8
|
作者
Kizilaslan, Abdulkadir [1 ,2 ]
Efe, Sukran [3 ]
Akbulut, Hatem [1 ,2 ]
机构
[1] Sakarya Univ, Met & Mat Sci Dept, Esentepe Campus, TR-54187 Sakarya, Turkey
[2] Sakarya Univ, Res Dev & Applicat Ctr SARGEM, Sakarya, Turkey
[3] Ataturk Univ, TR-25240 Erzurum, Turkey
关键词
All-solid-state lithium-sulfur battery; Graphene; sulfur cathode; Li7P3S11; IONIC CONDUCTOR; LIQUID-PHASE; CATHODE; PERFORMANCE; CARBON; SHUTTLE; SUPPRESSION; INTERLAYER; OXIDE;
D O I
10.1007/s10008-020-04734-8
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The preparation of different cathode composites with intimate contact between the components is of great importance to obtain batteries with better electrochemical performance. Among different cathode systems, graphene-sulfur composites are widely utilized in lithium-sulfur batteries and their electrochemical performances are directly linked to syntheses methods. In this study, graphene-sulfur composite cathodes were prepared by three distinct routes and their performances were evaluated in all-solid-state lithium-sulfur batteries where the lithium and Li(7)P(3)S(11)were utilized as anode and solid electrolyte, respectively. Our results indicate that cathodes prepared by solution-based techniques were found to impart higher capacity and cycling stability compared with cathode prepared by the melt-diffusion method. Better performance was attributed to fine and homogeneously distributed particles obtained in cathodes prepared by solution-based techniques. Besides, higher capacity was acquired in the cathodes where the sulfur was obtained through reduction from Na(2)S(2)O(3)instead of utilizing sulfur in elemental powder form. Among three different cathodes synthesized by different routes, the best performance was gained in the cathode prepared by sulfur-amine chemistry method where the sulfur was obtained by reduction from Na(2)S(2)O(3)with 970 mAh g(-1)and 795 mAh g(-1)initial and after 200 cycles discharge capacity respectively. Our results indicate the significance of particle size and intimate contact between components on the electrochemical performance of the sulfur-based cathodes and the synthesis route to follow for high-performance all-solid-state lithium-sulfur batteries.
引用
收藏
页码:2279 / 2288
页数:10
相关论文
共 50 条
  • [1] Electrochemical evaluation of different graphene/sulfur composite synthesis routes in all-solid-state lithium-sulfur batteries
    Abdulkadir Kızılaslan
    Şükran Efe
    Hatem Akbulut
    Journal of Solid State Electrochemistry, 2020, 24 : 2279 - 2288
  • [2] Sulfur/carbon cathode composite with LiI additives for enhanced electrochemical performance in all-solid-state lithium-sulfur batteries
    Li, Hao
    Wang, Rui
    Zhao, Shengqiu
    Song, Jiangping
    Liao, Yucong
    Tang, Haolin
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2023, 6 (05)
  • [3] Sulfur/carbon cathode composite with LiI additives for enhanced electrochemical performance in all-solid-state lithium-sulfur batteries
    Hao Li
    Rui Wang
    Shengqiu Zhao
    Jiangping Song
    Yucong Liao
    Haolin Tang
    Advanced Composites and Hybrid Materials, 2023, 6
  • [4] Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization
    Gicha, Birhanu Bayissa
    Tufa, Lemma Teshome
    Nwaji, Njemuwa
    Hu, Xiaojun
    Lee, Jaebeom
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [5] Enhanced Electrochemical Stability in All-Solid-State Lithium-Sulfur Batteries with Lithium Argyrodite Electrolyte
    Yen, Yin-Ju
    Sul, Hyunki
    Manthiram, Arumugam
    SMALL, 2025,
  • [6] All-solid-state lithium-sulfur batteries assembled by composite polymer electrolyte and amorphous sulfur/rGO composite cathode
    Chen, Fei
    Puente, P. M. Gonzalez
    Zhang, Yiluo
    Cao, Shiyu
    Lu, Xinqi
    Yi, Zhuoran
    Shen, Qiang
    Li, Jun
    SOLID STATE IONICS, 2022, 380
  • [7] Constructing the Interconnected Charge Transfer Pathways in Sulfur Composite Cathode for All-Solid-State Lithium-Sulfur Batteries
    Choi, Ha-Neul
    Kim, Hun
    Kim, Min-Jae
    Sun, Yang-Kook
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (08) : 11076 - 11083
  • [8] Sulfur-Based Composite Electrode with Interconnected Mesoporous Carbon for All-Solid-State Lithium-Sulfur Batteries
    Sakuda, Atsushi
    Sato, Yuta
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    ENERGY TECHNOLOGY, 2019, 7 (12)
  • [9] Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries
    Eshetu, Gebrekidan Gebresilassie
    Judez, Xabier
    Li, Chunmei
    Bondarchuk, Oleksandr
    Rodriguez-Martinez, Lide M.
    Zhang, Heng
    Armand, Michel
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (48) : 15368 - 15372
  • [10] Recent advances in cathodes for all-solid-state lithium-sulfur batteries
    Shengbo Yang
    Bo Wang
    Qiang Lv
    Nan Zhang
    Zekun Zhang
    Yutong Jing
    Jinbo Li
    Rui Chen
    Bochen Wu
    Pengfei Xu
    Dianlong Wang
    Chinese Chemical Letters, 2023, 34 (07) : 84 - 95