Used mainly for manufacturing operative tissue structures to replace damaged ones, three-dimensional (3D) bioprinting is a burgeoning area of medical science with enormous potential. Since the technology is still relatively new, 3D bioprinting heavily relies on the trial-and-error approach for advancement, but the general process currently involves a mixture of various biomaterials in hydrogel form. The quality of the results is affected significantly by the parameters by which the print is made. Even the most seemingly minute details can drastically change the outcome of the print, including temperature, print time, print speed and nozzle diameter, and dispensing pressure. The biomaterial used is also of the utmost importance. Based on current results, an ideal biomaterial should include the same or similar chemical, biological, mechanical, and practical properties of the target end structure. It is critical to ascertain the closest parameters available to ensure a quality end resulting print. This study aims to determine and streamline process parameters to the nearest possible degree to optimize the bioprinting process of hybrid bio-inks. Using material made from unchanged alginate, alginate with gelatin and combined amino acids and derivatives with diphenylalanine, the medical properties of each biomaterial are examined, as well as their flow behavior, allowing a certain level of predictability on printing parameters. Printing parameters are the parameters by which we can predict how well a target structure can be accurately constructed using various bio-inks. Results for the study indicated that air pressure, nozzle speed, and diameter, as well as offset and angular pattern, all play significant roles in affecting printing quality. Ultimately, the results have also indicated that printing parameters primarily hinge on the composition of the hydrogels used. This study also presented a detailed frame of reference to assess amino acids and derivatives with diphenylalanine systematically, which can also be used in other areas of 3D bioprinting. The results of this study would be crucial in establishing 3D bioprinting as a one-stop manufacturing solution for biopharmaceutical industries.