Identification of a Connection from Cauchy Data on a Riemann Surface with Boundary

被引:24
|
作者
Guillarmou, Colin [1 ]
Tzou, Leo [2 ,3 ]
机构
[1] Ecole Normale Super, CNRS, DMA, UMR 8553, F-75230 Paris, France
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Univ Helsinki, Dept Math, Helsinki 00014, Finland
关键词
Calderon inverse problems; Cauchy data space; magnetic Schrodinger operator; Riemann surfaces; connection Laplacian; 2; DIMENSIONS; SCHRODINGER-EQUATION; VECTOR POTENTIALS; INVERSE; OPERATOR;
D O I
10.1007/s00039-011-0110-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a connection del(x) on a complex line bundle over a Riemann surface with boundary M (0), with connection 1-form X. We show that the Cauchy data space of the connection Laplacian (also called magnetic Laplacian) L:=del(x*)del(x) + q, with q a complex-valued potential, uniquely determines the connection up to gauge isomorphism, and the potential q.
引用
收藏
页码:393 / 418
页数:26
相关论文
共 50 条