Skin lesion image classification using sparse representation in quaternion wavelet domain

被引:4
|
作者
Ngo, Long H. [1 ]
Luong, Marie [1 ]
Sirakov, Nikolay M. [2 ]
Viennet, Emmanuel [1 ]
Thuong Le-Tien [3 ]
机构
[1] Univ Sorbonne Paris Nord, Lab Traitement & Transport Informat, Villetaneuse, France
[2] Texas A&M Univ Commerce, Dept Math, Commerce, TX USA
[3] Ho Chi Minh City Univ Technol, Dept Telecommun, Ho Chi Minh City, Vietnam
关键词
Sparse representation; Quaternion; Wavelet frequencies; Skin lesions; SHRINKAGE;
D O I
10.1007/s11760-021-02112-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automated melanoma classification remains a challenging task because skin lesion images are prone to low contrast and many kinds of artifacts. To handle these challenges, we introduce a novel and efficient method for skin lesion classification based on the machine learning approach and sparse representation (SR) in the quaternion wavelet (QW) domain. Further, we investigate the application of the SR approach with low, high, and mixed wavelet frequencies. Using QW coefficients, the classification problem is mapped onto the algebra of quaternions. Using the public skin lesion image datasets ISIC2017 and ISIC2019, we experimentally validated that creating dictionary with quaternions of low-frequency wavelet sub-band leads to the most accurate classification of skin lesions to melanoma or benign. We compared our approach with contemporary methods including neural networks.
引用
收藏
页码:1721 / 1729
页数:9
相关论文
共 50 条
  • [1] Skin lesion image classification using sparse representation in quaternion wavelet domain
    Long H. Ngo
    Marie Luong
    Nikolay M. Sirakov
    Emmanuel Viennet
    Thuong Le-Tien
    Signal, Image and Video Processing, 2022, 16 : 1721 - 1729
  • [2] Image Classification Based on Sparse Representation in the Quaternion Wavelet Domain
    Ngo, Long H.
    Sirakov, Nikolay M.
    Luong, Marie
    Viennet, Emmanuel
    Thuong Le-Tien
    IEEE ACCESS, 2022, 10 : 31548 - 31560
  • [3] Image fusion scheme based on quaternion wavelet transform and sparse representation
    Chang L.
    Feng X.
    Zhang R.
    1633, Chinese Institute of Electronics (39): : 1633 - 1639
  • [4] Image Fusion with Double Sparse Representation in Wavelet Domain
    Wang Jun
    Peng Jinye
    Wu Jun
    Yan Kun
    PROCEEDINGS OF 2013 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2012, : 1006 - 1009
  • [5] Image resolution enhancement using wavelet domain transformation and sparse signal representation
    Suryanarayana, Gunnam
    Dhuli, Ravindra
    2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, COMMUNICATION & CONVERGENCE, ICCC 2016, 2016, 92 : 311 - 316
  • [6] Multimodal image fusion using sparse representation classification in tetrolet domain
    Shandoosti, Hamid Reza
    Mehrabi, Adel
    DIGITAL SIGNAL PROCESSING, 2018, 79 : 9 - 22
  • [8] Double sparse image representation via learning dictionaries in wavelet domain
    Liang, Ruihua
    Cheng, Lizhi
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2012, 34 (04): : 126 - 131
  • [9] Image classification using wavelet watermarking representation
    Pun, Chi-Man
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 1493 - 1497
  • [10] Vector Sparse Representation of Color Image Using Quaternion Matrix Analysis
    Xu, Yi
    Yu, Licheng
    Xu, Hongteng
    Zhang, Hao
    Truong Nguyen
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (04) : 1315 - 1329