SPECTRAL-SPATIAL CLUSTERING OF HYPERSPECTRAL IMAGE BASED ON LAPLACIAN REGULARIZED DEEP SUBSPACE CLUSTERING

被引:0
|
作者
Zeng, Meng [1 ]
Cai, Yaoming [1 ]
Liu, Xiaobo [2 ]
Cai, Zhihua [1 ]
Li, Xiang [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan, Peoples R China
[2] China Univ Geosci, Sch Automat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian regularized; Deep Subspace Clustering; 3-D Convolutional Auto-encoder; Hyperspectral Image;
D O I
10.1109/igarss.2019.8898947
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents a novel clustering method, named Laplacian regularized deep subspace clustering (LRDSC), for unsupervised hyperspectral image (HSI) classification. We introduce the Laplacian regularization into the subspace clustering to consider the manifold structure reflecting geometric information. To enable the subspace clustering, which works in linear space, to deal with the complicated HSI data with non-linear characteristics, we combine the subspace clustering as a self-expressive layer with deep convolutional auto-encoder. Furthermore, the 3-D convolutions and deconvolutions with skip connections are utilized to make full extraction of the spectral-spatial information and full use of the historical feature maps produced by the network. We compare the results of the proposed method with six existing cluster methods on four real hyperspectral data sets, showing that the proposed method is able to achieve state-of-the-art performance.
引用
收藏
页码:2694 / 2697
页数:4
相关论文
共 50 条
  • [1] Dual subspace clustering for spectral-spatial hyperspectral image clustering
    Liu, Shujun
    IMAGE AND VISION COMPUTING, 2024, 150
  • [2] Spectral-Spatial Clustering of Hyperspectral Remote Sensing Image with Sparse Subspace Clustering Model
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    Xu, Xiong
    2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [3] Deep Spatial-Spectral Subspace Clustering for Hyperspectral Image
    Lei, Jianjun
    Li, Xinyu
    Peng, Bo
    Fang, Leyuan
    Ling, Nam
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (07) : 2686 - 2697
  • [4] Graph-Based Structural Deep Spectral-Spatial Clustering for Hyperspectral Image
    Peng, Bo
    Yao, Yuxuan
    Lei, Jianjun
    Fang, Leyuan
    Huang, Qingming
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [5] Deep Spectral Clustering With Regularized Linear Embedding for Hyperspectral Image Clustering
    Zhao, Yang
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Spectral-Spatial Diffusion Geometry for Hyperspectral Image Clustering
    Murphy, James M.
    Maggioni, Mauro
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (07) : 1243 - 1247
  • [7] Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
    Zhang, Hongyan
    Zhai, Han
    Zhang, Liangpei
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3672 - 3684
  • [8] Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering
    Cai, Yaoming
    Zeng, Meng
    Cai, Zhihua
    Liu, Xiaobo
    Zhang, Zijia
    INFORMATION SCIENCES, 2021, 578 : 85 - 101
  • [9] Graph regularized spatial-spectral subspace clustering for hyperspectral band selection
    Wang, Jun
    Tang, Chang
    Zheng, Xiao
    Liu, Xinwang
    Zhang, Wei
    Zhu, En
    NEURAL NETWORKS, 2022, 153 : 292 - 302
  • [10] The Hyperspectral Image Clustering Based on Spatial Information and Spectral Clustering
    Wei, Yiwei
    Niu, Chao
    Wang, Hongxia
    Liu, Daizhi
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP 2019), 2019, : 127 - 131