Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

被引:394
|
作者
Colless, J. I. [1 ,2 ]
Ramasesh, V. V. [1 ,2 ]
Dahlen, D. [1 ,2 ]
Blok, M. S. [1 ,2 ]
Kimchi-Schwartz, M. E. [1 ,2 ,6 ]
McClean, J. R. [3 ,5 ]
Carter, J. [3 ]
de Jong, W. A. [3 ]
Siddiqi, I. [1 ,2 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Quantum Nanoelect Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Ctr Quantum Coherent Sci, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[5] Google Inc, Venice, CA 90291 USA
[6] MIT, Lincoln Lab, Lexington, MA 02421 USA
来源
PHYSICAL REVIEW X | 2018年 / 8卷 / 01期
关键词
STATE;
D O I
10.1103/PhysRevX.8.011021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H-2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Error-resilient Floquet geometric quantum computation
    Wang, Yuan-Sheng
    Liu, Bao-Jie
    Su, Shi-Lei
    Yung, Man-Hong
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):
  • [2] Error-resilient DNA computation
    Karp, RM
    Kenyon, C
    Waarts, O
    PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1996, : 458 - 467
  • [3] Error-resilient DNA computation
    Karp, RM
    Kenyon, C
    Waarts, O
    RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 450 - 466
  • [4] An error-resilient blocksorting compression algorithm
    Butterman, L
    Memon, N
    DCC 2003: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2003, : 417 - 417
  • [5] Synergistic Approximation of Computation and Memory Subsystems for Error-Resilient Applications
    Raha, Arnab
    Raghunathan, Vijay
    IEEE EMBEDDED SYSTEMS LETTERS, 2017, 9 (01) : 21 - 24
  • [6] An Error-Resilient Arithmetic Coding Algorithm for Compressed Meshes
    Cheng, Zhi-Quan
    Li, Bao
    Xu, Kai
    Wang, Yan-Zhen
    Dang, Gang
    Jin, Shi-Yao
    PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON CYBERWORLDS, 2008, : 455 - 460
  • [7] Error-Resilient Spintronics via the Shannon-Inspired Model of Computation
    Patil, Ameya D.
    Manipatruni, Sasikanth
    Nikonov, Dmitri E.
    Young, Ian A.
    Shanbhag, Naresh R.
    IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2019, 5 (01): : 10 - 18
  • [8] An Error-Resilient Wavelet-Based ECG Processor Under Voltage Overscaling
    Chen, Mengyuan
    Han, Jun
    Zhang, Yicheng
    Zou, Yao
    Li, Yi
    Zeng, Xiaoyang
    2014 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS), 2014, : 628 - 631
  • [9] Error-resilient Monte Carlo quantum simulation of imaginary time
    Huo, Mingxia
    Li, Ying
    QUANTUM, 2023, 7 : 1 - 41
  • [10] Parallel design for error-resilient entropy coding algorithm on GPU
    Dai, Yuan
    Fang, Yong
    He, Dongjian
    Huang, Bormin
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2013, 73 (04) : 411 - 419