The Wavelet Transform with best decomposition Level and Relevant Vector Machine Based Approach for Chaotic Time Series Forecasting

被引:0
|
作者
Wang Xiao-Lu [1 ]
Liu Jian [1 ]
Lu Jian-Jun [2 ]
机构
[1] Xian Univ Sci & Technol, Sch Commun & Informat Engn, Xian 710054, Shaanxi, Peoples R China
[2] Xian Univ Posts & Telecommun, Dept Telecommun Engn, Xian 710054, Shaanxi, Peoples R China
关键词
chaotic time series; phase space reconstruction; wavelet transform; RVM; forecasting; PREDICTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to accurately predict the chaotic time series, a novel approach based on integration of wavelet transform and Relevant Vector Machine (RVM) is proposed. The best wavelet decomposition level is determined with the condition that a certain function space orthogonal projection energy in wavelet MRA, is smaller than the largest energy of the forecasting biases. Delay mapping is introduced to transform the different components into new samples of historical characteristics, after wavelet transform. The different new samples are predicted by their corresponding forecasters, respectively. The final forecasting result is obtained by combining all the predicted results. The sparse relevant support vector and its corresponding hyper parameters are calculated on the new sample space of time series by the Sparse Bayesian learning process. Based on which the prediction results are work out. The results show that the approach only using the SVM or RVM based forecaster the averaged prediction biases is more than 10%. The tracking ability and the dynamic behavior are remarkably improved to the averaged biases of 5.43% by using the wavelet transform with best decomposition Series and RVM based forecaster. It is indicated that the suggested approach is feasible and effective.
引用
收藏
页码:947 / 953
页数:7
相关论文
共 50 条
  • [1] Wavelet Transform and PSO Support Vector Machine Based Approach for Time Series Forecasting
    Wang Xiao-Lu
    Liu Jian
    Lu Jian-Jun
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL I, PROCEEDINGS, 2009, : 46 - +
  • [2] Time series forecasting based on wavelet KPCA and support vector machine
    Chen, Fei
    Han, Chongzhao
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1487 - 1491
  • [3] Prediction of Temperature Time Series Based on Wavelet Transform and Support Vector Machine
    Liu, Xiaohong
    Yuan, Shujuan
    Li, Li
    JOURNAL OF COMPUTERS, 2012, 7 (08) : 1911 - 1918
  • [4] An Ensemble Model of Arima and Ann with Restricted Boltzmann Machine Based on Decomposition of Discrete Wavelet Transform for Time Series Forecasting
    Pannakkong, Warut
    Sriboonchitta, Songsak
    Huynh, Van-Nam
    JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING, 2018, 27 (05) : 690 - 708
  • [5] An Ensemble Model of Arima and Ann with Restricted Boltzmann Machine Based on Decomposition of Discrete Wavelet Transform for Time Series Forecasting
    Warut Pannakkong
    Songsak Sriboonchitta
    Van-Nam Huynh
    Journal of Systems Science and Systems Engineering, 2018, 27 : 690 - 708
  • [6] Volterra filter nonlinear adaptive forecasting of chaotic time series based on Wavelet packet transform
    Feng, Xingjie
    Pan, Wenxin
    Journal of Information and Computational Science, 2010, 7 (13): : 2637 - 2645
  • [7] Online Forecasting of Time Series Using Incremental Wavelet Decomposition and Least Squares Support Vector Machine
    Yuan, Jinsha
    Kong, Yinghui
    Shi, Yancui
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 2938 - 2941
  • [8] Chaotic forecasting method based on Wavelet Transform
    Matsumoto, Yoshiyuki
    Watada, Junzo
    INTERNATIONAL JOURNAL OF KNOWLEDGE-BASED AND INTELLIGENT ENGINEERING SYSTEMS, 2006, 10 (01) : 49 - 56
  • [9] Time series forecasting based on wavelet decomposition and feature extraction
    Liu, Tianhong
    Wei, Haikun
    Zhang, Chi
    Zhang, Kanjian
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S183 - S195
  • [10] Time series forecasting based on wavelet decomposition and feature extraction
    Tianhong Liu
    Haikun Wei
    Chi Zhang
    Kanjian Zhang
    Neural Computing and Applications, 2017, 28 : 183 - 195