Efficient simulation method for polarizable protein force fields: Application to the simulation of BPTI in liquid

被引:58
|
作者
Harder, E
Kim, BC
Friesner, RA
Berne, BJ
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Columbia Univ, Ctr Bimol Simulat, New York, NY 10027 USA
关键词
D O I
10.1021/ct049914s
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A methodology for large scale molecular dynamics simulation of a solvated polarizable protein, using a combination of permanent and inducible point dipoles with fluctuating and fixed charges, is discussed and applied to the simulation of water solvated bovine pancreatic trypsin inhibitor (BPTI). The electrostatic forces are evaluated using a generalized form of the P3M Ewald method which includes point dipoles in addition to point charge sites. The electrostatic configuration is propagated along with the nuclei during the course of the simulation using an extended Lagrangian formalism. For the system size studied, 20000 atoms, this method gives only a marginal computational overhead relative to nonpolarizable potential models (1.23-1.45) per time step of simulation. The models employ a newly developed polarizable dipole force field for the protein(1) with two commonly used water models TlP4P-FQ and RPOL. Performed at constant energy and constant volume (NVE) using the velocity Verlet algorithm, the simulations show excellent energy conservation and run stably for their 2 ns duration. To characterize the accuracy of the solvation models the protein structure is analyzed. The simulated structures remain within 1 A of the experimental crystal structure for the duration of the simulation in line with the nonpolarizable OPLS-AA model.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [1] Polarizable force fields for condensed phase simulation
    Head-Gordon, Teresa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [2] Polarizable force fields for condensed phase simulation
    Head-Gordon, Teresa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [3] The ReaxFF polarizable reactive force fields for molecular dynamics simulation of ferroelectrics
    Goddard, WA
    Zhang, QS
    Uludogan, M
    Strachan, A
    Cagin, T
    FUNDAMENTAL PHYSICS OF FERROELECTRICS 2002, 2002, 626 : 45 - 55
  • [4] Accurate and scalable polarizable force fields for molecular simulation: The road ahead
    Piquemal, Jean-Philip
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [5] Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields
    Meher, B. R.
    Kumar, M. V. Satish
    Bandyopadhyay, Pradipta
    INDIAN JOURNAL OF PHYSICS, 2009, 83 (01) : 81 - 90
  • [6] Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields
    B. R. Meher
    M. V. Satish Kumar
    Pradipta Bandyopadhyay
    Indian Journal of Physics, 2009, 83 : 81 - 90
  • [7] Polarizable Force Fields for Protein Simulations
    Kaminski, George
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 601A - 602A
  • [8] A Polarizable Empirical Force Field for Molecular Dynamics Simulation of Liquid Hydrocarbons
    Szklarczyk, Oliwia M.
    Bachmann, Stephan J.
    van Gunsteren, Wilfred F.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2014, 35 (10) : 789 - 801
  • [9] Towards polarizable molecular dynamics simulations on biologically meaningful timescales: matching additive and polarizable force fields for multiscale simulation
    Baker, C.
    FEBS JOURNAL, 2012, 279 : 531 - 531
  • [10] Polarizable and non-polarizable force fields: Protein folding, unfolding, and misfolding
    Kamenik, Anna S.
    Handle, Philip H.
    Hofer, Florian
    Kahler, Ursula
    Kraml, Johannes
    Liedl, Klaus R.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (18):