WAVE AND MAXWELL'S EQUATIONS IN CARNOT GROUPS

被引:13
|
作者
Franchi, Bruno [1 ]
Tesi, Maria Carla [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
关键词
Carnot groups; differential forms; Maxwell's equations; wave equations; COMPENSATED COMPACTNESS; FUNDAMENTAL SOLUTION; DIFFERENTIAL FORMS; CONTACT COMPLEX; AREA FORMULA; OPERATORS; THEOREM; SPACES;
D O I
10.1142/S0219199712500320
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we define Maxwell's equations in the setting of the intrinsic complex of differential forms in Carnot groups introduced by M. Rumin. It turns out that these equations are higher-order equations in the horizontal derivatives. In addition, when looking for a vector potential, we have to deal with a new class of higher-order evolution equations that replace usual wave equations of the Euclidean setting and that are no more hyperbolic. We prove equivalence of these equations with the "geometric equations" defined in the intrinsic complex, as well as existence and properties of solutions.
引用
收藏
页数:62
相关论文
共 50 条
  • [1] Maxwell's Equations in Anisotropic Media and Carnot Groups as Variational Limits
    Baldi, Annalisa
    Franchi, Bruno
    ADVANCED NONLINEAR STUDIES, 2015, 15 (02) : 333 - 362
  • [2] On a class of semilinear evolution equations for vector potentials associated with Maxwell's equations in Carnot groups
    Franchi, Bruno
    Obrecht, Enrico
    Vecchi, Eugenio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 90 : 56 - 69
  • [3] A wave automaton for Maxwell's equations
    Vanneste, C
    EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (03): : 391 - 404
  • [4] A wave automaton for Maxwell's equations
    C. Vanneste
    The European Physical Journal B - Condensed Matter and Complex Systems, 2001, 23 : 391 - 404
  • [5] Stochastic Wave Propagation in Maxwell's Equations
    Liu, Gi-Ren
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (05) : 1126 - 1146
  • [6] SUBELLIPTIC AND PARAMETRIC EQUATIONS ON CARNOT GROUPS
    Bisci, Giovanni Molica
    Ferrara, Massimiliano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (07) : 3035 - 3045
  • [7] Stochastic Wave Propagation in Maxwell’s Equations
    Gi-Ren Liu
    Journal of Statistical Physics, 2015, 158 : 1126 - 1146
  • [8] Nonlinear elliptic equations on Carnot groups
    Massimiliano Ferrara
    Giovanni Molica Bisci
    Dušan Repovš
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 707 - 718
  • [9] Nonlocal diffusion equations in Carnot groups
    Cardoso, Isolda E.
    Vidal, Raul E.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (03) : 2159 - 2180
  • [10] Nonlocal diffusion equations in Carnot groups
    Isolda E. Cardoso
    Raúl E. Vidal
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 2159 - 2180