Non-separable Haar-type wavelets and canonical number systems

被引:0
|
作者
Belov, AM [1 ]
机构
[1] Samara State Aerosp Univ, Samara 443086, Russia
关键词
Haar-type wavelet basis; self-affine tile; canonical number systems;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work the method of construction of Haar-type orthonormal wavelet basis of L-2(R-n) from characteristic functions chi(Q) of fundamental tiles of number systems suggested by Mendivil and Piche [1] is generalized. In the prototype work construction of Haar-type wavelet basis was built upon existence of positional number system with the complex base in the ring of Gaussian integers. In this paper the construction of Haar-type wavelet basis of L-2 (R-n) associated with canonical binary number systems in other fields is considered.
引用
收藏
页码:286 / 289
页数:4
相关论文
共 50 条
  • [1] Some simple Haar-type wavelets in higher dimensions
    Krishtal, Ilya A.
    Robinson, Benjamin D.
    Weiss, Guido L.
    Wilson, Edward N.
    JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (01) : 87 - 96
  • [2] Some simple Haar-type wavelets in higher dimensions
    Ilya A. Krishtal
    Benjamin D. Robinson
    Guido L. Weiss
    Edward N. Wilson
    The Journal of Geometric Analysis, 2007, 17 : 87 - 96
  • [3] Jordan Test for the Haar-Type Systems
    Shcherbakov, V. I.
    RUSSIAN MATHEMATICS, 2024, 68 (11) : 53 - 70
  • [4] Orthonormal bases of non-separable wavelets with sharp directions
    Durand, S
    2005 International Conference on Image Processing (ICIP), Vols 1-5, 2005, : 233 - 236
  • [5] Non-separable windowed linear canonical transform
    Shah, Firdous A.
    Qadri, Huzaifa L.
    Lone, Waseem Z.
    OPTIK, 2022, 251
  • [6] Non-Separable Linear Canonical Wavelet Transform
    Srivastava, Hari M.
    Shah, Firdous A.
    Garg, Tarun K.
    Lone, Waseem Z.
    Qadri, Huzaifa L.
    SYMMETRY-BASEL, 2021, 13 (11):
  • [7] ON FOURIER COEFFICIENTS OF LIPSCHITZ FUNCTIONS FOR HAAR-TYPE SYSTEMS
    GONCHAROV, VA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1993, (06): : 6 - 11
  • [8] Non-separable multivariate filter banks from univariate wavelets
    Chen, Qiuhui
    Ren, Guangbin
    Cerejeiras, Paula
    Kaehler, Uwe
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (10) : 951 - 969
  • [9] Non-separable linear canonical wave packet transform
    Bhat, Younis Ahmad
    Sheikh, N. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [10] On Jackson-type inequalities associated with separable Haar wavelets
    Andrianov, P.
    Skopina, M.
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (03)