Some remark on optimal stochastic control with partial information

被引:1
|
作者
Baghéry, F
Turpin, I [1 ]
Ouknine, Y
机构
[1] Univ Valenciennes, Lab Math Appl & Calcul Sci, F-59313 Valenciennes, France
[2] Fac Sci Semlalia, Dept Math, Marrakech, Morocco
关键词
stochastic control; stochastic flow; viscosity solutions; Zakai equation;
D O I
10.1080/07362990500292783
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the control problem of a partially observable diffusion process, which is initialized at a fixed point of R-n, and we want to characterize the associated value function. To resort to the theory of viscosity solutions depends on the possibility to translate such a problem on Hilbert spaces like L-2(R-n), and so it can not be used here. Nevertheless, a result of N. Bouleau and F. Hirsch allows us to introduce a broadened problem which fulfills the condition. The fact remains to link these two control problems.
引用
收藏
页码:1305 / 1320
页数:16
相关论文
共 50 条
  • [1] Optimal Control of Backward Doubly Stochastic Systems With Partial Information
    Zhu, Qingfeng
    Shi, Yufeng
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (01) : 173 - 178
  • [2] An Optimal Control Problem of Backward Stochastic Differential Equations with Partial Information
    Wang Guangchen
    Xiao Hua
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 1592 - 1595
  • [3] The Maximum Principles for Stochastic Recursive Optimal Control Problems Under Partial Information
    Wang, Guangchen
    Wu, Zhen
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) : 1230 - 1242
  • [4] Partial information LQ optimal control of backward. stochastic differential equations
    Wang, Guangchen
    Wu, Zhen
    Xiong, Jie
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 1694 - 1697
  • [5] ON OPTIMAL STOCHASTIC CONTROL WITH SMOOTHED INFORMATION
    LINDQUIST, A
    INFORMATION SCIENCES, 1968, 1 (01) : 55 - +
  • [6] A risk-sensitive stochastic control approach to an optimal investment problem with partial information
    Hata, Hiroaki
    Iida, Yasunari
    FINANCE AND STOCHASTICS, 2006, 10 (03) : 395 - 426
  • [7] Linear quadratic optimal control for time-delay stochastic system with partial information
    Wang, Wenjing
    Xu, Liang
    Xu, Juanjuan
    Li, Xun
    Zhang, Huanshui
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (10) : 2227 - 2238
  • [8] A risk-sensitive stochastic control approach to an optimal investment problem with partial information
    Hiroaki Hata
    Yasunari Iida
    Finance and Stochastics, 2006, 10 : 395 - 426
  • [9] SINGULAR STOCHASTIC CONTROL AND OPTIMAL STOPPING WITH PARTIAL INFORMATION OF ITO-LEVY PROCESSES
    Oksendal, Bernt
    Sulem, Agnes
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (04) : 2254 - 2287
  • [10] Optimal control problem of backward stochastic differential delay equation under partial information
    Wu, Shuang
    Wang, Guangchen
    SYSTEMS & CONTROL LETTERS, 2015, 82 : 71 - 78