Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems

被引:38
|
作者
Chaumont-Frelet, T. [1 ,2 ,3 ]
Nicaise, S. [4 ]
机构
[1] Univ Nice Sophia Antipolis, Nachos Project Team 2004 Route Lucioles BP 93, F-06902 Sophia Antipolis, France
[2] INRIA Sophia Antipolis Mediterranee Res Ctr, Nachos Project Team 2004 Route Lucioles BP 93, F-06902 Sophia Antipolis, France
[3] UMR CNRS 6621, JA Dieudonne Math Lab, Parc Valrose, F-06108 Nice 02, France
[4] Univ Valenciennes, Lab Math & Leurs Applicat Valenciennes, EA 4015, FR CNRS 2956, Valenciennes, France
关键词
Helmholtz problems; high-order methods; finite element methods; pollution effect; HELMHOLTZ-EQUATION; DOMAINS; VERSION;
D O I
10.1093/imanum/drz020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the convergence of finite element discretizations of time-harmonic wave propagation problems. We propose a general methodology to derive stability conditions and error estimates that are explicit with respect to the wavenumber . This methodology is formally based on an expansion of the solution in powers of , which permits to split the solution into a regular, but oscillating part, and another component that is rough, but behaves nicely when the wavenumber increases. The method is developed in its full generality and is illustrated by three particular cases: the elastodynamic system, the convected Helmholtz equation and the acoustic Helmholtz equation in homogeneous and heterogeneous media. Numerical experiments are provided, which confirm that the stability conditions and error estimates are sharp.
引用
收藏
页码:1503 / 1543
页数:41
相关论文
共 50 条
  • [1] WAVENUMBER-EXPLICIT CONVERGENCE ANALYSIS FOR FINITE ELEMENT DISCRETIZATIONS OF TIME-HARMONIC WAVE PROPAGATION PROBLEMS WITH PERFECTLY MATCHED LAYERS
    Chaumont-Frelet, Theophile
    Gallistl, Dietmar
    Nicaise, Serge
    Tomezyk, Jerome
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (01) : 1 - 52
  • [2] WAVENUMBER-EXPLICIT STABILITY AND CONVERGENCE ANALYSIS OF hp FINITE ELEMENT DISCRETIZATIONS OF HELMHOLTZ PROBLEMS IN PIECEWISE SMOOTH MEDIA
    Bernkopf, M.
    Chaumont-frelet, T.
    Melenk, J. M.
    MATHEMATICS OF COMPUTATION, 2025, 94 (351) : 73 - 122
  • [3] WAVENUMBER EXPLICIT CONVERGENCE ANALYSIS FOR GALERKIN DISCRETIZATIONS OF THE HELMHOLTZ EQUATION
    Melenk, J. M.
    Sauter, S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (03) : 1210 - 1243
  • [4] WAVENUMBER EXPLICIT CONVERGENCE OF A MULTISCALE GENERALIZED FINITE ELEMENT METHOD FOR HETEROGENEOUS HELMHOLTZ PROBLEMS*
    Ma, Chupeng
    Alber, Christian
    Scheichl, Robert
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (03) : 1546 - 1584
  • [5] WAVENUMBER EXPLICIT ANALYSIS FOR GALERKIN DISCRETIZATIONS OF LOSSY HELMHOLTZ PROBLEMS
    Melenk, Jens M.
    Sauter, Stefan A.
    Torres, Celine
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (04) : 2119 - 2143
  • [6] ACCURATE EXPLICIT FINITE ELEMENT METHOD FOR WAVE PROPAGATION AND DYNAMIC CONTACT PROBLEMS
    Kolman, Radek
    Cho, Sang Soon
    Park, K. C.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 499 - 509
  • [7] On the use of NURBS-based discretizations in the scaled boundary finite element method for wave propagation problems
    Gravenkamp, Hauke
    Natarajan, Sundararajan
    Dornisch, Wolfgang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 315 : 867 - 880
  • [8] Finite element discretizations of nonlocal minimal graphs: Convergence
    Borthagaray, Juan Pablo
    Li, Wenbo
    Nochetto, Ricardo H.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 189
  • [9] A finite element method enriched for wave propagation problems
    Ham, Seounghyun
    Bathe, Klaus-Juergen
    COMPUTERS & STRUCTURES, 2012, 94-95 : 1 - 12
  • [10] Preprocessing for finite element discretizations of geometric problems
    Gu, Hong
    Burger, Martin
    SYMBOLIC-NUMERIC COMPUTATION, 2007, : 315 - +