Study on the Catastrophic Evolution of Tianshan Road Slope under the Freeze-Thaw Cycles

被引:5
|
作者
Wang, Luqi [1 ]
Zhang, Yibing [1 ]
Guo, Jian [1 ]
Ou, Qiang [1 ]
Liu, Songlin [1 ]
Wang, Lin [1 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
基金
中国国家自然科学基金;
关键词
ROCK MASS; MODEL; REGION;
D O I
10.1155/2021/6128843
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The maximum temperature difference of Tianshan Road can reach 77.4 degrees C in a year. Under such complex mechanical environment, the mechanical properties of rock mass and structural planes will change significantly as the increase of freeze-thaw cycles (FTC). Consequently, the FTC has become a key factor in the instability and failure of rocky slopes along the Tianshan Road. In this paper, the progressive deformation of rocky slopes and sudden failure process after critical instability were studied through the FTC tests of rock mass and structural planes, discrete element method, and theoretical analysis. The results show that the structural planes and internal microcracks of the rock mass expand under the action of the FTC, causing a gradual decrease in the stability of the slope. The dynamic collapse of the rocky slope has a certain degree of randomness caused by the spatial distribution of structural planes and the interaction between the rock fragments. Due to the limitation of the slipping space and the tilt angle of the trailing edge of the slope, long-distance migration did not occur, and the in situ accumulation of the slope was obvious after failure. The analysis method in this paper can provide an important reference for guiding the catastrophe mechanism analysis and protection of engineering slopes in cold regions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Damage evolution mechanism of loess slope under the combination of freeze-thaw cycles and earthquake
    Yuan, Ganglie
    Wu, Zhijian
    Che, Ailan
    Zhou, Hanxu
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2023, 166
  • [2] Evolution and characterization of damage of concrete under freeze-thaw cycles
    Ling Wang
    Yin Cao
    Zhendi Wang
    Peng Du
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 710 - 714
  • [3] Evolution and Characterization of Damage of Concrete under Freeze-thaw Cycles
    王玲
    CAO Yin
    WANG Zhendi
    DU Peng
    Journal of Wuhan University of Technology(Materials Science Edition), 2013, (04) : 710 - 714
  • [4] Evolution and characterization of damage of concrete under freeze-thaw cycles
    Wang Ling
    Cao Yin
    Wang Zhendi
    Du Peng
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2013, 28 (04): : 710 - 714
  • [5] Study of Damage Mechanism and Evolution Model of Concrete under Freeze-Thaw Cycles
    Zhao, Ning
    Lian, Shuailong
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [6] Study on the evolution of microscopic pore structure of sandstone under freeze-thaw cycles
    Zhang, Junyue
    Wang, Guibin
    Liu, Huandui
    Yang, Mengmeng
    COLD REGIONS SCIENCE AND TECHNOLOGY, 2024, 217
  • [7] STUDY ON CREEP OF CONCRETE UNDER FREEZE-THAW CYCLES
    Cao, Jian
    Wang, Yuan-Feng
    Zhao, Shang-Chuan
    ISISS '2009: INNOVATION & SUSTAINABILITY OF STRUCTURES, VOLS 1 AND 2, 2009, : 1111 - 1115
  • [8] Investigation of slope deterioration mechanism under freeze-thaw cycles: centrifuge modelling
    Ng, Charles W. W.
    Wang, Yikai
    Zhang, Shuai
    Li, Zeyu
    Zhang, Qi
    Zhong, Haiyi
    CANADIAN GEOTECHNICAL JOURNAL, 2023, 60 (10) : 1532 - 1544
  • [9] Mechanical characteristics and damage evolution of granite under freeze-thaw cycles
    Chen, Dun
    Li, Guoyu
    Li, Jinming
    Du, Qingsong
    Zhou, Yu
    Mao, Yuncheng
    Qi, Shunshun
    Tang, Liyun
    Jia, Hailiang
    Peng, Wanlin
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [10] Brittleness evolution characteristics of cyan sandstone under freeze-thaw cycles
    Gao Feng
    Cao Shan-peng
    Xiong Xin
    Zhou Ke-ping
    Zhu Long-yin
    ROCK AND SOIL MECHANICS, 2020, 41 (02) : 445 - 452