A new container scheduling algorithm based on multi-objective optimization

被引:53
|
作者
Liu, Bo [1 ]
Li, Pengfei [1 ]
Lin, Weiwei [2 ]
Shu, Na [1 ]
Li, Yin [3 ]
Chang, Victor [4 ,5 ]
机构
[1] South China Normal Univ, Sch Comp, Guangzhou, Guangdong, Peoples R China
[2] South China Normal Univ, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
[3] Guangzhou & CAS, Inst Software Applicat Technol, Guangzhou 511458, Guangdong, Peoples R China
[4] Xian Jiaotong Liverpool Univ, Int Business Sch Suzhou, Suzhou, Peoples R China
[5] Xian Jiaotong Liverpool Univ, Res Inst Big Data Analyt, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Container scheduling; Docker; Multi-objective optimization; Swarm;
D O I
10.1007/s00500-018-3403-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Docker container has been used in cloud computing at a rapid rate in the past 2 years, and Docker container resource scheduling problem has gradually become a research hot issue. It is NP-complete as the optimization criteria is to minimize the overall processing time of all the tasks. Nevertheless, minimization of makespan does not equate to customers' satisfaction. Aiming at the performance optimization of Docker container resource scheduling, the authors propose a multi-objective container scheduling algorithm, namely Multiopt. The algorithm considers five key factors: CPU usage of every node, memory usage of every node, the time consumption transmitting images on the network, the association between containers and nodes, the clustering of containers, which affect the performance of applications in containers. To select the most suitable node to deploy containers needed to be allocated in the scheduling process, the authors define a metric method for every key factor and establish a scoring function for each one and then combine them into a composite function. The experimental results show that compared with the other three well-known algorithms: Spread, Binpack, and Random, Multiopt increases the maximum TPS by 7% and reduces the average response time per request by 7.5% while consuming roughly same allocation time.
引用
收藏
页码:7741 / 7752
页数:12
相关论文
共 50 条
  • [1] A new container scheduling algorithm based on multi-objective optimization
    Bo Liu
    Pengfei Li
    Weiwei Lin
    Na Shu
    Yin Li
    Victor Chang
    Soft Computing, 2018, 22 : 7741 - 7752
  • [2] Ant Colony Algorithm for Multi-Objective Optimization of Container-Based Microservice Scheduling in Cloud
    Lin, Miao
    Xi, Jianqing
    Bai, Weihua
    Wu, Jiayin
    IEEE ACCESS, 2019, 7 : 83088 - 83100
  • [3] Multi-Objective and Parallel Particle Swarm Optimization Algorithm for Container-Based Microservice Scheduling
    Chen, Xinying
    Xiao, Siyi
    SENSORS, 2021, 21 (18)
  • [4] Multi-objective bacterial colony optimization algorithm for integrated container terminal scheduling problem
    Ben Niu
    Qianying Liu
    Zhengxu Wang
    Lijing Tan
    Li Li
    Natural Computing, 2021, 20 : 89 - 104
  • [5] Multi-objective bacterial colony optimization algorithm for integrated container terminal scheduling problem
    Niu, Ben
    Liu, Qianying
    Wang, Zhengxu
    Tan, Lijing
    Li, Li
    NATURAL COMPUTING, 2021, 20 (01) : 89 - 104
  • [6] Multi-Objective Optimization of Container-Based Microservice Scheduling in Edge Computing
    Fan, Guisheng
    Chen, Liang
    Yu, Huiqun
    Qi, Wei
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2021, 18 (01) : 23 - 42
  • [7] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [8] A New Algorithm based on PSO for Multi-objective Optimization
    Leung, Man-Fai
    Ng, Sin-Chun
    Cheung, Chi-Chung
    Lui, Andrew K.
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 3156 - 3162
  • [9] Process scheduling for prefabricated construction based on multi-objective optimization algorithm
    Li, Yan
    Wu, Jiajun
    Hao, Yi
    Gao, Yuchen
    Chai, Runqi
    Chai, Senchun
    Zhang, Baihai
    AUTOMATION IN CONSTRUCTION, 2024, 168
  • [10] A novel multi-objective bacteria foraging optimization algorithm(MOBFOA) for multi-objective scheduling
    Kaur, Mandeep
    Kadam, Sanjay
    APPLIED SOFT COMPUTING, 2018, 66 : 183 - 195