Automated image analysis tool for tumor volume growth rate to guide precision cancer therapy: EGFR-mutant non-small-cell lung cancer as a paradigm

被引:8
|
作者
Nishino, Mizuki [1 ,2 ]
Wakai, Satoshi [3 ]
Hida, Tomoyuki [1 ,2 ]
Dahlberg, Suzanne E. [4 ]
Ozaki, Masahiro [3 ]
Hatabu, Hiroto [1 ,2 ]
Tachizaki, Hisashi [3 ]
Johnson, Bruce E. [5 ,6 ,7 ]
机构
[1] Brigham & Womens Hosp, Dept Radiol, 450 Brookline Ave, Boston, MA 02215 USA
[2] Dana Farber Canc Inst, 450 Brookline Ave, Boston, MA 02215 USA
[3] Canon Med Syst Corp, 1385 Shimoishigami, Otawara, Tochigi 3248550, Japan
[4] Dana Farber Canc Inst, Dept Biostat, 450 Brookline Ave, Boston, MA 02215 USA
[5] Dana Farber Canc Inst, Dept Med Oncol, 450 Brookline Ave, Boston, MA 02215 USA
[6] Dana Farber Canc Inst, Dept Med, 450 Brookline Ave, Boston, MA 02215 USA
[7] Brigham & Womens Hosp, 450 Brookline Ave, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
Lung cancer; Epidermal growth factor receptor; EGFR inhibitor; Computed tomography; Tumor growth rate; DIFFERENT TREATMENT MODALITIES; RESPONSE EVALUATION CRITERIA; ACQUIRED-RESISTANCE; 1ST-LINE TREATMENT; NSCLC PATIENTS; OPEN-LABEL; ERLOTINIB; CHEMOTHERAPY; GEFITINIB; PROGRESSION;
D O I
10.1016/j.ejrad.2018.10.014
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To develop an automated analytic module for calculation of tumor growth rate from serial CT scans and to apply the module and evaluate reproducibility in a pilot cohort of advanced NSCLC patients with EGFR mutations treated with EGFR tyrosine kinase inhibitors. Materials and methods: The module utilized a commercially available image-processing workstation equipped with a validated tumor volume measurement tool. An automated analytic software module was programmed with the capability to record and display serial tumor volume changes and to calculate tumor volume growth rate over time and added to the workstation. The module was applied to evaluate the tumor growth rate in a pilot cohort of 24 EGFR-mutant patients treated with EGFR inhibitors, and reproducibility references as tested by two independent thoracic radiologists. Results: The module analyzed chest CT scans from 24 patients (5 males, 19 females; median age: 61) with a median of 8 scans per patient, totaling 227 scans and provided a graphical display with an automated and instant calculation of tumor growth rate after the nadir volume for each patient. High inter and intraobserver agreements were noted for tumor growth rates, with concordance correlation coefficients of 0.9323 and 0.9668, respectively. Interpretation of slow versus fast tumor growth using previously identified threshold of <= 0.15/month had a perfect interobserver agreement (kappa = 1.00), and an excellent intraobserver agreement (kappa = 0.895). Conclusions: The present study describes the development of an image analytic module for assessing tumor growth rate and the data demonstrates the functionality and reproducibility of the module in a pilot cohort of EGFR-mutant NSCLC patients treated with EGFR-TKI. The image analytic module is an initial step for clinical translation of the tumor growth rate approach to guide cancer treatment in precision oncology.
引用
收藏
页码:68 / 76
页数:9
相关论文
共 50 条
  • [1] Automated Image Analysis Tool for Tumor Volume Growth Rate to Guide Precision Cancer Therapy: EGFR-Mutant NSCLC as a Paradigm
    Nishino, M.
    Wakai, S.
    Hida, T.
    Dahlberg, S.
    Ozaki, M.
    Hatabu, H.
    Tachizaki, H.
    Johnson, B.
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) : S693 - S693
  • [2] Adjuvant therapy for resected EGFR-mutant non-small-cell lung cancer
    Wu, Fang
    Liu, Xianling
    Ma, Jin-an
    Gao, Yawen
    Hu, Chunhong
    LANCET ONCOLOGY, 2018, 19 (03): : E124 - E124
  • [3] Adjuvant therapy for resected EGFR-mutant non-small-cell lung cancer Reply
    Wu, Yi-Long
    Zhong, Wen-Zhao
    LANCET ONCOLOGY, 2018, 19 (03): : E127 - E127
  • [4] Treatment choice in EGFR-mutant non-small-cell lung cancer
    Brueckl, Wolfgang M.
    LANCET ONCOLOGY, 2017, 18 (11): : 1425 - 1426
  • [5] Spontaneously expectorated EGFR-mutant non-small-cell lung cancer
    Sumi, Toshiyuki
    Terai, Kotomi
    Chiba, Hirofumi
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2023, 53 (11) : 1094 - 1095
  • [6] Is It Time to Implement Adjuvant Targeted Therapy in EGFR-Mutant Non-Small-Cell Lung Cancer?
    Kulkarni, Amit A.
    Naqash, Abdul Rafeh
    Puri, Sonam
    Dienstmann, Rodrigo
    JCO PRECISION ONCOLOGY, 2021, 5 : 408 - 414
  • [7] Brain metastases in patients with EGFR-mutant non-small-cell lung cancer
    Rosell, Rafael
    Karachaliou, Niki
    LANCET RESPIRATORY MEDICINE, 2017, 5 (09): : 669 - 671
  • [8] Circulating tumour DNA in EGFR-mutant non-small-cell lung cancer
    Cabanero, M.
    Tsao, M. S.
    CURRENT ONCOLOGY, 2018, 25 : S38 - S44
  • [9] The changing treatment landscape of EGFR-mutant non-small-cell lung cancer
    Zhou, Fei
    Guo, Haoyue
    Xia, Yang
    Le, Xiuning
    Tan, Daniel S. W.
    Ramalingam, Suresh S.
    Zhou, Caicun
    NATURE REVIEWS CLINICAL ONCOLOGY, 2025, 22 (02) : 95 - 116
  • [10] Targeting MET amplification in EGFR-mutant non-small-cell lung cancer
    Rosell, Rafael
    Chaib, Imane
    Santarpia, Mariacarmela
    LANCET RESPIRATORY MEDICINE, 2020, 8 (11): : 1068 - 1070