Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle

被引:72
|
作者
Taneja, Mohit [1 ,2 ]
Byabazaire, John [1 ,2 ]
Jalodia, Nikita [1 ,2 ]
Davy, Alan [1 ,2 ]
Olariu, Cristian [3 ]
Malone, Paul [1 ]
机构
[1] Waterford Inst Technol, Sch Sci & Comp, Dept Comp & Math, Emerging Networks Lab,Telecommun Software & Syst, Waterford, Ireland
[2] CONNECT Ctr Future Networks & Commun, Dublin, Ireland
[3] IBM Corp, Innovat Exchange, Dublin, Ireland
基金
欧盟地平线“2020”; 爱尔兰科学基金会;
关键词
Smart dairy farming; Fog computing; Internet of Things (IoT); Cloud computing; Smart farm; Data analytics; Microservices; Machine learning; Clustering; Classification; Data-driven; LYING BEHAVIOR; DATA ANALYTICS; BACK POSTURE; RISK-FACTORS; COWS; IOT; PREVALENCE; LOCOMOTION; WALKING; VALIDATION;
D O I
10.1016/j.compag.2020.105286
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Timely lameness detection is one of the major and costliest health problems in dairy cattle that farmers and practitioners haven't yet solved adequately. The primary reason behind this is the high initial setup costs, complex equipment and lack of multi-vendor interoperability in currently available solutions. On the other hand, human observation based solutions relying on visual inspections are prone to late detection with possible human error, and are not scalable. This poses a concern with increasing herd sizes, as prolonged or undetected lameness severely compromises cows' health and welfare, and ultimately affects the milk productivity of the farm. To tackle this, we have developed an end-to-end IoT application that leverages advanced machine learning and data analytics techniques to monitor the cattle in real-time and identify lame cattle at an early stage. The proposed approach has been validated on a real world smart dairy farm setup consisting of a dairy herd of 150 cows in Waterford, Ireland. Using long-range pedometers specifically designed for use in dairy cattle, we monitor the activity of each cow in the herd. The accelerometric data from these sensors is aggregated at the fog node to form a time series of behavioral activities, which are further analyzed in the cloud. Our hybrid clustering and classification model identifies each cow as either Active, Normal or Dormant, and further, Lame or Non-Lame. The detected lameness anomalies are further sent to farmer's mobile device by way of push notifications. The results indicate that we can detect lameness 3 days before it can be visually captured by the farmer with an overall accuracy of 87%. This means that the animal can either be isolated or treated immediately to avoid any further effects of lameness. Moreover, with fog based computational assistance in the setup, we see an 84% reduction in amount of data transferred to the cloud as compared to the conventional cloud based approach.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] An Approach for Early Lameness Detection in Dairy Cattle
    Haladjian, Juan
    Nueske, Stefan
    Bruegge, Bernd
    PROCEEDINGS OF THE 2017 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2017 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS (UBICOMP/ISWC '17 ADJUNCT), 2017, : 53 - 56
  • [2] A data-driven approach using machine learning for early detection of the lean blowout
    Hasti, Veeraraghava Raju
    Navarkar, Abhishek
    Gore, Jay P.
    ENERGY AND AI, 2021, 5
  • [3] Machine Learning based Psychology: Advocating for A Data-Driven Approach
    Velez, Jorge I.
    INTERNATIONAL JOURNAL OF PSYCHOLOGICAL RESEARCH, 2021, 14 (01): : 6 - 11
  • [4] WeChat Toxic Article Detection: A Data-Driven Machine Learning Approach
    Weng, Yunpeng
    Wu, Muhong
    Chen, Xu
    Wu, Qiong
    He, Lingnan
    Chen, Liang
    2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 916 - 921
  • [5] SmartHerd management: A microservices-based fog computing-assisted IoT platform towards data-driven smart dairy farming
    Taneja, Mohit
    Jalodia, Nikita
    Byabazaire, John
    Davy, Alan
    Olariu, Cristian
    SOFTWARE-PRACTICE & EXPERIENCE, 2019, 49 (07): : 1055 - 1078
  • [6] Enhanced Efficiency in Fog Computing: A Fuzzy Data-Driven Machine Selection Strategy
    Zavieh, Hadi
    Javadpour, Amir
    Ja'fari, Forough
    Sangaiah, Arun Kumar
    Slowik, Adam
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (01) : 368 - 389
  • [7] Load Redistribution Attack Detection using Machine Learning: A Data-Driven Approach
    Pinceti, Andrea
    Sankar, Lalitha
    Kosut, Oliver
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [8] A data-driven approach to the processing of sniffer-based gas emissions data from dairy cattle
    Lovendahl, Peter
    Milkevych, Viktor
    Nielsen, Rikke Krogh
    Bjerring, Martin
    Manzanilla-Pech, Coralia
    Johansen, Kresten
    Difford, Gareth F.
    Villumsen, Trine M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 227
  • [9] DATA-DRIVEN SYMBOL DETECTION VIA MODEL-BASED MACHINE LEARNING
    Farsad, Nariman
    Shlezinger, Nir
    Goldsmith, Andrea J.
    Eldar, Yonina C.
    2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 571 - 575
  • [10] Data-driven symbol detection via model-based machine learning
    Farsad, Nariman
    Shlezinger, Nir
    Goldsmith, Andrea J.
    Eldar, Yonina C.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2020, 20 (03) : 283 - 317