SnP2O7 Covered Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries

被引:99
|
作者
Pan, Jun [1 ]
Chen, Shulin [2 ,3 ,4 ]
Zhang, Dapeng [1 ]
Xu, Xuena [1 ]
Sun, Yuanwei [2 ,3 ]
Tian, Fang [1 ]
Gao, Peng [2 ,3 ,5 ]
Yang, Jian [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Minist Educ, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China
[2] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China
[4] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
[5] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
关键词
anodes; full cells; phosphates; sodium-ion batteries; HIGH-PERFORMANCE ANODE; CYCLE-STABLE ANODE; LITHIUM-ION; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; DOPED GRAPHENE; POROUS CARBON; STORAGE; NANOPARTICLES; MICROSPHERES;
D O I
10.1002/adfm.201804672
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnP2O7 attached to reduced graphene oxide (rGO) is synthesized by a solvothermal reaction, followed by a mild annealing in Ar/H-2. As an anode material for sodium-ion batteries, this composite is associated with the conversion reaction between Sn and SnP2O7 and the alloy reaction between Sn and NaxSn, as evidenced by ex situ techniques, such as high-resolution transmission electron microscope images, selected area electron diffraction patterns, and X-ray diffraction patterns. The close contact between SnP2O7 and rGO facilitates the charge transfer upon cycling and benefits the preservation of SnP2O7 on rGO even after pulverization. Therefore, this composite exhibits an extraordinary cycling stability. 99% of the initial capacity is remained after 200 cycles at 0.2 A g(-1) and also 99% is kept after 1000 cycles at 1.0 A g(-1). The similar results are also observed in full cells. Quantitative kinetic analysis confirms that sodium storage in this composite is governed by pseudocapacitance, especially at high rates. These results indicate the promising potential of metal pyrophosphates in sodium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] MoSe2-Covered N,P-Doped Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries
    Niu, Feier
    Yang, Jing
    Wang, Nana
    Zhang, Dapeng
    Fan, Weiliu
    Yang, Jian
    Qian, Yitai
    ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (23)
  • [2] Cheese-like porous SnP2O7 composite as a long-life and high-rate anode material for potassium-ion batteries
    Qiao, Fan
    Wang, Junjun
    Zhu, Yiyan
    Tan, Xingnian
    Wang, Xuanpeng
    An, Qinyou
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [3] Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries
    Zhu, Yansong
    Yao, Qian
    Shao, Ruiwen
    Wang, Cheng
    Yan, Weishan
    Ma, Jizhen
    Liu, Duo
    Yang, Jian
    Qian, Yitai
    NANO LETTERS, 2022, : 7976 - 7983
  • [4] Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries
    Zhu, Yansong
    Yao, Qian
    Shao, Ruiwen
    Wang, Cheng
    Yan, Weishan
    Ma, Jizhen
    Liu, Duo
    Yang, Jian
    Qian, Yitai
    Nano Letters, 2022, 22 (19): : 7976 - 7983
  • [5] Li4Ti5O12 nanosheets as high-rate and long-life anode materials for sodium-ion batteries
    Yang, Lin Yu
    Li, Hui Zhong
    Liu, Jun
    Tang, Sha Sha
    Lu, Ya Kun
    Li, Si Te
    Min, Jie
    Yan, Ning
    Lei, Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (48) : 24446 - 24452
  • [6] NiSe2 Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery
    Zhu, Shaohua
    Li, Qidong
    Wei, Qiulong
    Sun, Ruimin
    Liu, Xiaoqing
    An, Qinyou
    Mai, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (01) : 311 - 316
  • [7] Amorphous Sb2S3 embedded in graphite: a high-rate, long-life anode material for sodium-ion batteries
    Zhao, Yubao
    Manthiram, Arumugam
    CHEMICAL COMMUNICATIONS, 2015, 51 (67) : 13205 - 13208
  • [8] Porous NiS2 nanosheets anchored on reduced graphene oxide as high-rate and long-life anode materials for sodium-ion batteries
    Cai, Jianzhong
    Chen, Xunjie
    Duan, Xuezhi
    Yang, Guangxing
    Zhang, Qiao
    Fan, Haosen
    Liu, Zhiting
    Peng, Feng
    ELECTROCHIMICA ACTA, 2023, 462
  • [9] Hierarchical MoS2/Carbon microspheres as long-life and high-rate anodes for sodium-ion batteries
    Wu, Junxiong
    Lu, Ziheng
    Li, Kaikai
    Cui, Jiang
    Yao, Shanshan
    Haq, Muhammad Ihsan-ul
    Li, Baohua
    Yang, Quan-Hong
    Kang, Feiyu
    Ciucci, Francesco
    Kim, Jang-Kyo
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5668 - 5677
  • [10] Carbon-Anchored MnO Nanosheets as an Anode for High-Rate and Long-Life Lithium-Ion Batteries
    Xiao, Ying
    Cao, Minhua
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) : 12840 - 12849