Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction

被引:49
|
作者
Zhang, Xiao-Guang [1 ,2 ,3 ]
Nie, You-Qi [1 ,2 ,3 ]
Zhou, Hongyi [4 ]
Liang, Hao [1 ,2 ,3 ]
Ma, Xiongfeng [4 ]
Zhang, Jun [1 ,2 ,3 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China
[4] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2016年 / 87卷 / 07期
基金
中国国家自然科学基金;
关键词
RANDOM BIT GENERATION; PHASE; VACUUM;
D O I
10.1063/1.4958663
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a real-time and fully integrated quantum random number generator (QRNG) by measuring laser phase fluctuations. The QRNG scheme based on laser phase fluctuations is featured for its capability of generating ultra-high-speed random numbers. However, the speed bottleneck of a practical QRNG lies on the limited speed of randomness extraction. To close the gap between the fast randomness generation and the slow post-processing, we propose a pipeline extraction algorithm based on Toeplitz matrix hashing and implement it in a high-speed field-programmable gate array. Further, all the QRNG components are integrated into a module, including a compact and actively stabilized interferometer, high-speed data acquisition, and real-time data post-processing and transmission. The final generation rate of the QRNG module with real-time extraction can reach 3.2 Gbps. Published by AIP Publishing.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Integrated Gbps quantum random number generator with real-time extraction based on homodyne detection
    Huang, Leilei
    Zhou, Hongyi
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (03) : B130 - B136
  • [2] 18.8 Gbps real-time quantum random number generator with a photonic integrated chip
    Bai, Bing
    Huang, Jianyao
    Qiao, Guan-Ru
    Nie, You-Qi
    Tang, Weijie
    Chu, Tao
    Zhang, Jun
    Pan, Jian-Wei
    APPLIED PHYSICS LETTERS, 2021, 118 (26)
  • [3] An 8.4 Gbps real-time quantum random number generator based on quantum phase fluctuation
    Lei, Wen
    Xie, Zhihuang
    Li, Yuzhong
    Fang, Junbin
    Shen, Weiqiang
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)
  • [4] An 8.4 Gbps real-time quantum random number generator based on quantum phase fluctuation
    Wen Lei
    Zhihuang Xie
    Yuzhong Li
    Junbin Fang
    Weiqiang Shen
    Quantum Information Processing, 2020, 19
  • [5] 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation
    Zheng, Ziyong
    Zhang, Yichen
    Huang, Weinan
    Yu, Song
    Guo, Hong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (04):
  • [6] 5.4 Gbps real time quantum random number generator with simple implementation
    Yang, Jie
    Liu, Jinlu
    Su, Qi
    Li, Zhengyu
    Fan, Fan
    Xu, Bingjie
    Guo, Hong
    OPTICS EXPRESS, 2016, 24 (24): : 27475 - 27481
  • [7] Parallel real-time quantum random number generator
    Guo, Xiaomin
    Cheng, Chen
    Wu, Mingchuan
    Gao, Qingzhong
    Li, Pu
    Guo, Yanqiang
    OPTICS LETTERS, 2019, 44 (22) : 5566 - 5569
  • [8] Real-time Processing System for a Quantum Random Number Generator
    Solymos, Balazs
    Bacsardi, Laszlo
    INFOCOMMUNICATIONS JOURNAL, 2020, 12 (01): : 53 - 59
  • [9] 20 Gbps real-time source-independent quantum random number generator based on a silicon photonic chip
    Bian, Yiming
    Yang, Jie
    Jiang, Haoyuan
    Huang, Wei
    Su, Qi
    Yu, Song
    Zhang, Lei
    Zhang, Yichen
    Xu, Bingjie
    OPTICS LETTERS, 2025, 50 (04) : 1216 - 1219
  • [10] Minimalist design of a robust real-time quantum random number generator
    Kravtsov, K. S.
    Radchenko, I. V.
    Kulik, S. P.
    Molotkov, S. N.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (08) : 1743 - 1747