Low temperature synthesis and spark plasma sintering of a boron carbide with a low residual carbon content

被引:9
|
作者
Kenny, Jonathan [1 ]
McDonald, Nikkia [1 ]
Binner, Jon [1 ]
Chang, Isaac Tsz Hong [2 ]
Marinel, Sylvain [3 ]
机构
[1] Univ Birmingham, Dept Met & Mat, Elms Rd, Edgbaston B15 2TT, W Midlands, England
[2] Brunel Univ London, LiME Training Ctr, Kingston Lane, Uxbridge UB8 3PH, Middx, England
[3] Normandy Univ, ENSICAEN, Blvd Marechal Juin, F-14000 Caen, France
基金
英国工程与自然科学研究理事会;
关键词
Boron carbide; Low temperature synthesis; Spark plasma sintering (SPS); MECHANICAL-PROPERTIES; CARBOTHERMIC REDUCTION; FRACTURE-TOUGHNESS; RAMAN-SPECTROSCOPY; BORIC-ACID; DENSIFICATION; B4C; MICROSTRUCTURE; BEHAVIOR; POWDER;
D O I
10.1016/j.jeurceramsoc.2021.10.012
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Using spark plasma sintering (SPS), >98.5 % dense boron carbide (B4C) samples were made from commercially available and lab-synthesised powders made via a low temperature synthesis (LTS) process. The work showed that the LTS powder can be produced in batches of tens to hundreds of grams whilst maintaining a high purity material with lower levels of residual free carbon (20.6-21.3 wt.% C) than commercially available samples (22.4 wt.% C). The LTS material was seen to exhibit higher hardness values (37.8 GPa) than the commercial grade material (32.5 GPa) despite featuring a coarser average grain size (10.8 mu m and 2.4 mu m respectively). This is largely thought to be due to the influence of ZrO2 and AlB2 impurities introduced to the material during micronising milling of the powder after synthesis, as opposed to the influence of the materials lower carbon content.
引用
收藏
页码:383 / 391
页数:9
相关论文
共 50 条
  • [1] Spark plasma sintering of silicon carbide powders with carbon and boron as additives
    Yang J.
    Jiao J.
    Wang L.
    Li B.
    2018, Wiley Blackwell (263): : 137 - 143
  • [2] Low temperature synthesis of strontium barium niobate by spark plasma sintering
    Fang, MH
    Pan, W
    Fang, ZY
    Shi, SL
    Xu, Q
    HIGH-PERFORMANCE CERAMICS III, PTS 1 AND 2, 2005, 280-283 : 767 - 770
  • [3] Additive manufacturing-assisted sintering: Low pressure, low temperature spark plasma sintering of tungsten carbide complex shapes
    Grippi, Thomas
    Torresani, Elisa
    Maximenko, Andrii L.
    Olevsky, Eugene A.
    CERAMICS INTERNATIONAL, 2024, 50 (19) : 37228 - 37240
  • [4] Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering
    Zhang, Mei
    Li, Ruidi
    Yuan, Tiechui
    Feng, Xiao
    Xie, Siyao
    SCRIPTA MATERIALIA, 2019, 163 : 34 - 39
  • [5] Low temperature spark plasma sintering of YIG powders
    Fernandez-Garcia, L.
    Suarez, M.
    Menendez, J. L.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 502 (01) : 132 - 135
  • [6] Demonstrating low-temperature sintering of boron carbide powders
    Dai J.
    Lee W.
    Gomez E.D.
    Yamamoto N.
    International Journal of Ceramic Engineering and Science, 2019, 1 (04): : 178 - 184
  • [7] SPARK PLASMA SINTERING OF LOW ALLOY STEEL MODIFIED WITH SILICON CARBIDE
    Hebda, M.
    Debecka, H.
    Miernik, K.
    Kazior, J.
    ARCHIVES OF METALLURGY AND MATERIALS, 2016, 61 (02) : 503 - 508
  • [8] Carbon contamination of elemental beta-boron promoted a stable boron carbide by spark plasma sintering
    Guo, Tingwei
    Hu, Yixuan
    Lahkar, Simanta
    Joardar, Joydip
    Chen, Mingwei
    Reddy, Kolan Madhav
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (10) : 5590 - 5600
  • [9] Spark plasma sintering and mechanical properties of boron carbide ceramics
    Chen, Gang
    Zhang, Song
    Wang, Chuan-Bin
    Shen, Qiang
    Zhang, Lian-Meng
    Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2009, 38 (01): : 165 - 169
  • [10] Spark plasma sintering of nanopowder and bulk samples of boron carbide
    Nadaraia, Lili
    Jalabadze, Nikoloz
    Khundadze, Levan
    2012 12TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2012,