Ribbonlength of torus knots

被引:7
|
作者
Kennedy, Brooke [1 ]
Mattman, Thomas W. [2 ]
Raya, Roberto [2 ]
Tating, Dan [3 ]
机构
[1] Red Bluff Union High Sch, Red Bluff, CA 96080 USA
[2] Calif State Univ Chico, Dept Math & Stat, Chico, CA 95929 USA
[3] Foothill High Sch, Palo Cedro, CA 96073 USA
基金
美国国家科学基金会;
关键词
ribbonlength; torus knots;
D O I
10.1142/S0218216508005938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Kauffman's model of. at knotted ribbons, we demonstrate how all regular polygons of at least seven sides can be realized by ribbon constructions of torus knots. We calculate length to width ratios for these constructions thereby bounding the Ribbonlength of the knots. In particular, we give evidence that the closed (respectively, truncation) Ribbonlength of a (q + 1,q) torus knot is (2q + 1) cot(pi/(2q + 1)) (respectively, 2q cot(pi/(2q + 1))). Using these calculations, we provide the bounds c(1) <= 2/pi and c(2) >= 5/3 cot pi/5 for the constants c(1) and c(2) that relate Ribbonlength R(K) and crossing number C(K) in a conjecture of Kusner: c(1)C(K) <= R(K) <= c(2)C(K).
引用
收藏
页码:13 / 23
页数:11
相关论文
共 50 条