Embeddings of minimal non-abelian p-groups

被引:1
|
作者
Abbaspour, Mohammad Hassan [1 ]
Behravesh, Houshang [2 ]
Ghaffarzadeh, Ghodrat [1 ]
机构
[1] Islamic Azad Univ, Khoy Branch, Tehran, Iran
[2] Univ Urmia, Dept Math, Orumiyeh, Iran
关键词
Quasi-permutation representations; Minimal non-abelian p-groups; Character theory; QUASI-PERMUTATION REPRESENTATIONS;
D O I
10.1016/j.amc.2011.01.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. For a given finite group G, let p(G) denote the minimal degree of a faithful representation of G by permutation matrices, and let c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices. See [4]. It is easy to see that c(G) is a lower bound for p(G). Behravesh [H. Behravesh, The minimal degree of a faithful quasi-permutation representation of an abelian group, Glasg. Math. J. 39 (1) (1997) 51-57] determined c(G) for every finite abelian group G and also [H. Behravesh, Quasi-permutation representations of p-groups of class 2, J. Lond. Math. Soc. (2) 55 (2) (1997) 251-260] gave the algorithm of c(G) for each finite group G. In this paper, we first improve this algorithm and then determine c(G) and p(G) for an arbitrary minimal non-abelian p-group G. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:658 / 661
页数:4
相关论文
共 50 条
  • [1] On minimal non-abelian subgroups in finite p-groups
    Janko, Zvonimir
    JOURNAL OF GROUP THEORY, 2009, 12 (02) : 289 - 303
  • [2] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅲ)
    QU HaiPeng
    XU MingYao
    AN LiJian
    ScienceChina(Mathematics), 2015, 58 (04) : 763 - 780
  • [3] Finite p-groups with a minimal non-abelian subgroup of index p(Ⅱ)
    AN LiJian
    LI LiLi
    QU HaiPeng
    ZHANG QinHai
    Science China(Mathematics), 2014, 57 (04) : 737 - 753
  • [4] SOME NON-ABELIAN P-GROUPS WITH ABELIAN AUTOMORPHISM GROUPS
    JONAH, D
    KONVISSER, M
    ARCHIV DER MATHEMATIK, 1975, 26 (02) : 131 - 133
  • [5] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    HaiPeng Qu
    MingYao Xu
    LiJian An
    Science China Mathematics, 2015, 58 : 763 - 780
  • [6] On the occurrence of elementary abelian p-groups as the Schur multiplier of non-abelian p-groups
    Rai, Pradeep K.
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 803 - 806
  • [7] Finite p-groups with a minimal non-abelian subgroup of index p (III)
    Qu HaiPeng
    Xu MingYao
    An LiJian
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 763 - 780
  • [8] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    An LiJian
    Li Lili
    Qu HaiPeng
    Zhang QinHai
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (04) : 737 - 753
  • [9] Finite p-groups with a minimal non-abelian subgroup of index p (II)
    LiJian An
    LiLi Li
    HaiPeng Qu
    QinHai Zhang
    Science China Mathematics, 2014, 57 : 737 - 753
  • [10] Finite p-groups with a minimal non-abelian subgroup of index p (I)
    Qu, Haipeng
    Yang, Sushan
    Xu, Mingyao
    An, Lijian
    JOURNAL OF ALGEBRA, 2012, 358 : 178 - 188